Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2006
The aim was to identify the specific PKC isoform(s) and their mechanism of activation responsible for the modulation of cAMP production by bile acids in human dermal fibroblasts. Stimulation of fibroblasts with 25-100 microM of chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA) led to YFP-PKCalpha and YFP-PKCdelta translocation in 30-60 min followed by a transient 24- to 48-h downregulation of the total PKCalpha, PKCdelta, and PKCepsilon protein expression by 30-50%, without affecting that of PKCzeta. Increased plasma membrane translocation of PKCalpha was associated with an increased PKCalpha phosphorylation, whereas increased PKCdelta translocation to the perinuclear domain was associated with an increased accumulation of phospho-PKCdelta Thr505 and Tyr311 in the nucleus.
View Article and Find Full Text PDF