Publications by authors named "Kelli C Micocci"

Article Synopsis
  • The study examines the activity of a recombinant chitinase enzyme from leaf-cutting ants, which was effective against both colloidal and solid chitin substrates.
  • The analysis revealed that the enzyme produced N-acetylglucosamine as a product and reduced the viscosity of chitin solutions, indicating partial hydrolysis but not complete degradation of chitin.
  • The enzyme exhibited greater effectiveness on α-chitin compared to β-chitin and significantly inhibited the growth of a harmful fungus, suggesting potential applications in producing chitin derivatives and as an antifungal agent.
View Article and Find Full Text PDF

This work aimed to assess the influence of different structured substrates with hydrophilic and hydrophobic properties on micro and nano topographies developed on titanium alloys over pre-osteoblastic cell behavior. Nano topography influences small dimension levels of cell morphology by inducing filopodia formation in cell membranes, irrespectively to the wettability behavior of the surface. Therefore, micro and nanostructured surfaces of titanium-based samples using different techniques of surface modification processing, such as chemical treatments, micro-arc anodic oxidation (MAO), and MAO combined to laser irradiation were developed.

View Article and Find Full Text PDF

Hypoxia, a condition of low oxygenation frequently found in triple-negative breast tumors (TNBC), promotes extracellular vesicle (EV) secretion and favors cell invasion, a complex process in which cell morphology is altered, dynamic focal adhesion spots are created, and ECM is remodeled. Here, we investigated the invasive properties triggered by TNBC-derived hypoxic small EV (SEVh) in vitro in cells cultured under hypoxic (1% O) and normoxic (20% O) conditions, using phenotypical and proteomic approaches. SEVh characterization demonstrated increased protein abundance and diversity over normoxic SEV (SEVn), with enrichment in pro-invasive pathways.

View Article and Find Full Text PDF

Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris.

View Article and Find Full Text PDF

Cysteine peptidases are involved in physiological processes of insect development and have been considered as potential targets for the development of insect control strategies. In this study, we obtained a recombinant cysteine cathepsin L (AsCathL) from leaf-cutting ant (Atta sexdens), a species from the order Hymenoptera who causes enormous damage to crops, natural forests and reforested areas. RT-qPCR showed AsCathL expression throughout insect development and in all body parts of the adult insect analysed, suggesting its role as a lysosomal cathepsin.

View Article and Find Full Text PDF

Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging from the pharma industry to the development of microbial fuel cells. Nevertheless, pyocyanin production has been restricted to P.

View Article and Find Full Text PDF

Scaffolds of poly(-caprolactone) (PCL) and their biocomposites with 0, 1, 3, and 5 wt.% Biosilicate® were fabricated by the generative manufacturing process coupled with a vertical miniscrew extrusion head to application for restoration of bone tissue. Their morphological characterization indicated the designed 0°/90° architecture range of pore sizes and their interconnectivity is feasible for tissue engineering applications.

View Article and Find Full Text PDF

Background: Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood.

View Article and Find Full Text PDF

ADAMs are transmembrane multifunctional proteins that contain disintegrin and metalloprotease domains. ADAMs act in a diverse set of biological processes, including fertilization, inflammatory responses, myogenesis, cell migration, cell proliferation and ectodomain cleavage of membrane proteins. These proteins also have additional functions in pathological processes as cancer and metastasis development.

View Article and Find Full Text PDF

Although many preclinical studies have implicated β3 integrin receptors (αvβ3 and αIIbβ3) in cancer progression, β3 inhibitors have shown only modest efficacy in patients with advanced solid tumours. The limited efficacy of β3 inhibitors in patients could arise from our incomplete understanding of the precise function of β3 integrin and, consequently, inappropriate clinical application. Data from animal studies are conflicting and indicate heterogeneity with respect to the relative contributions of β3-expressing tumour and stromal cell populations in different cancers.

View Article and Find Full Text PDF

ADAM9 (A Disintegrin And Metalloproteinase 9) is a member of the ADAM protein family which contains a disintegrin domain. This protein family plays key roles in many physiological processes, including fertilization, migration, and cell survival. The ADAM proteins have also been implicated in various diseases, including cancer.

View Article and Find Full Text PDF