Publications by authors named "Kelley Yan"

Transitional cell states are at the crossroads of crucial developmental and regenerative events, yet little is known about how these states emerge and influence outcomes. The alveolar and airway epithelia arise from distal lung multipotent progenitors, which undergo cell fate transitions to form these distinct compartments. The identification and impact of cell states in the developing lung are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a strong protocol to culture mesothelial progenitor cells (MPCs) from pig and mouse thorax, discovering that BMP4 aids in differentiation into smooth muscle cells, while FGF2 helps expand the MPC pool but inhibits this differentiation.
  • * The study highlighted key signaling pathways involving BMP4, FGF2, and a Wnt activator (CHIR99021) that regulate MPC behaviors, offering insights into potential mechanisms underlying mesothelial cell functions and their role in conditions like mesothelioma.
View Article and Find Full Text PDF

The currently accepted intestinal epithelial cell organization model proposes that Lgr5 crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5 cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling.

View Article and Find Full Text PDF
Article Synopsis
  • * Demonstrates that Fgfbp1+ cells are multi-potent, can give rise to Lgr5+ cells, and can sustain regeneration even after Lgr5+ cells are depleted.
  • * Highlights the essential role of FGFBP1 in promoting crypt proliferation and maintaining epithelial homeostasis, suggesting a new model for intestinal tissue regeneration.
View Article and Find Full Text PDF

Background & Aims: The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated.

View Article and Find Full Text PDF

Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4 T cell activation culminates in intraepithelial T cell (T-IEL)-mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls.

View Article and Find Full Text PDF

The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. Following injury to the intestine, multiple different cell populations cooperate to drive regeneration of the mucosa. Immature myeloid cells (IMCs), marked by histidine decarboxylase ( ), participate in regeneration of multiple organs such as the colon and central nervous system.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide, accounting for 90% of all esophageal cancer cases each year, and is the deadliest of all human squamous cell carcinomas. Despite recent progress in defining the molecular changes accompanying ESCC initiation and development, patient prognosis remains poor. The functional annotation of these molecular changes is the necessary next step and requires models that both capture the molecular features of ESCC and can be readily and inexpensively manipulated for functional annotation.

View Article and Find Full Text PDF

The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5.

View Article and Find Full Text PDF

Clinical outcomes in colorectal cancer (CRC) correlate with T cell infiltrates, but the specific contributions of heterogenous T cell types remain unclear. To investigate the diverse function of T cells in CRC, we profiled 37,931 T cells from tumors and adjacent normal colon of 16 patients with CRC with respect to transcriptome, TCR sequence, and cell surface markers. Our analysis identified phenotypically and functionally distinguishable effector T cell types.

View Article and Find Full Text PDF

The microbiome is an emerging key co-factor in the development of esophageal cancer, the sixth leading cause of cancer death worldwide. However, there is a paucity of data delineating how the microbiome contributes to the pathobiology of the two histological subtypes of esophageal cancer: esophageal squamous cell carcinoma and esophageal adenocarcinoma. This critical knowledge gap is partially due to inadequate modeling of host-microbiome interactions in the etiology of esophageal cancers.

View Article and Find Full Text PDF

Hand injuries often result in significant functional impairments and are rarely completely restored. The spontaneous regeneration of injured appendages, which occurs in salamanders and newts, for example, has been reported in human fingertips after distal amputation, but this type of regeneration is rare in mammals and is incompletely understood. Here, we study fingertip regeneration by amputating murine digit tips, either distally to initiate regeneration, or proximally, causing fibrosis.

View Article and Find Full Text PDF

Knowledge of the development and hierarchical organization of tissues is key to understanding how they are perturbed in injury and disease, as well as how they may be therapeutically manipulated to restore homeostasis. The rapidly regenerating intestinal epithelium harbors diverse cell types and their lineage relationships have been studied using numerous approaches, from classical label-retaining and genetic lineage tracing methods to novel transcriptome-based annotations. Here, we describe the developmental trajectories that dictate differentiation and lineage specification in the intestinal epithelium.

View Article and Find Full Text PDF

Single-cell RNA-sequencing (scRNA-seq) provides a unique opportunity to study heterogeneous cell populations within tissues, including the intestinal epithelium, to gain detailed molecular insights into their biology. Many new putative markers of intestinal stem cells and their progeny have been described using single-cell transcriptomics, which has contributed to the identification of novel subpopulations of mature cell types and insight into their developmental trajectories. This approach has revealed tremendous cellular heterogeneity within the intestinal epithelium that is concordant with its diverse and multifaceted functions.

View Article and Find Full Text PDF

Emerging single-cell technologies, like single-cell RNA sequencing (scRNA-seq), enable the study of heterogeneous biological systems at cellular resolution. By profiling the set of expressed transcripts in each cell, single-cell transcriptomics has allowed for the cataloging of the cellular constituents of multiple organs and tissues, both in health and disease. In addition, these technologies have provided mechanistic insights into cellular function, cell state transitions, developmental trajectories and lineage relationships, as well as helped to dissect complex, population-level responses to environmental perturbations.

View Article and Find Full Text PDF

Background & Aims: Intestinal crypts have a remarkable capacity to regenerate after injury from loss of crypt base columnar (CBC) stem cells. After injury, facultative stem cells (FSCs) are activated to replenish the epithelium and replace lost CBCs. Our aim was to assess the role of insulin-like growth factor-1 (IGF-1) to activate FSCs for crypt repair.

View Article and Find Full Text PDF
Article Synopsis
  • Acetylcholine is a substance that helps the intestines work properly, affecting secretions and immune responses through specific receptors.* -
  • Researchers found that blocking certain receptors in mice made specific cells, known as tuft cells, grow more, which shows how the body reacts to changes in brain signals.* -
  • If the intestines are damaged (like from radiation), the tuft cells can't grow well and produce less acetylcholine, which means the intestines can't stay healthy.*
View Article and Find Full Text PDF
Article Synopsis
  • The intestinal epithelium relies on long-lived intestinal stem cells (ISCs) for maintenance, while short-lived progenitors can dedifferentiate back into ISCs under certain conditions, a process that is not well understood in cancer.
  • Researchers used various mouse models and methods to study the behavior of intestinal cells after injury, specifically looking at gene expression patterns in both healthy tissues and tumors.
  • Key findings showed that Bhlha15 cells can convert into enterocyte progenitors after injury, and sustained Notch activation influences gene expression in these cells, suggesting a potential link between dedifferentiation and cancer development.
View Article and Find Full Text PDF

Distinct stem/progenitor cells generate intestinal epithelium during fetal and postnatal life. In a recent issue of Nature, Nusse and Savage et al. use helminth infection to show that Lgr5 intestinal stem cells are replaced by fetal-like progenitors following injury, suggesting that some fetal developmental pathways are repurposed during injury-induced tissue regeneration.

View Article and Find Full Text PDF

Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5 ISCs, the most well-defined ISC pool, but Bmi1-GFP cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1.

View Article and Find Full Text PDF

-expressing tuft cells constitute a unique intestinal epithelial lineage that is distinct from enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. Tuft cells express taste-related receptors and distinct transcription factors and interact closely with the enteric nervous system, suggesting a chemosensory cell lineage. In addition, recent work has shown that tuft cells interact closely with cells of the immune system, with a critical role in the cellular regulatory network governing responses to luminal parasites.

View Article and Find Full Text PDF

The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves.

View Article and Find Full Text PDF

Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors.

View Article and Find Full Text PDF