Background And Hypothesis: Clozapine is an effective yet underutilized treatment for treatment-resistant schizophrenia spectrum disorders. This study aimed to identify factors affecting clozapine prescribing patterns among patients with treatment-resistant schizophrenia and schizoaffective disorder at an academic medical center.
Study Design: This retrospective combined cohort and case-control study examined demographic, socioeconomic, medical and psychiatric characteristics to determine predictors of clozapine initiation.
Organoid models have quickly become a popular research tool to evaluate novel therapeutics on 3-D recapitulated tissue. This has enabled researchers to use physiologically relevant human tissue in vitro to augment the standard use of immortalized cells and animal models. Organoids can also provide a model when an engineered animal cannot recreate a specific disease phenotype.
View Article and Find Full Text PDFWe present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates.
View Article and Find Full Text PDFDeep brain stimulation (DBS) of the subthalamic nucleus (STN), which consistently improves limb motor functions, shows mixed effects on speech functions in Parkinson's disease (PD). One possible explanation for this discrepancy is that STN neurons may differentially encode speech and limb movement. However, this hypothesis has not yet been tested.
View Article and Find Full Text PDFRetinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) recapitulate key features of retinogenesis and provide a promising platform to study retinal development and disease in a human context. Although multiple protocols are currently in use, hPSCs exhibit tremendous variability in differentiation efficiency, with some cell lines consistently yielding few or even no ROs, limiting their utility in research. We report here that early nicotinamide (NAM) treatment significantly improves RO yield across 8 hPSC lines from different donors, including some that would otherwise fail to generate a meaningful number of ROs.
View Article and Find Full Text PDFBackground: Little is known about the effects of social exclusion on youth with bipolar disorder (BD). Understanding these effects and the functional neural correlates of social exclusion in youth with BD may establish differences from healthy youth and help identify areas of intervention.
Methods: We investigated brain function in 19 youth with BD and 14 age and gender matched healthy control (HC) participants while performing Cyberball, an fMRI social exclusion task.
Mouse pluripotent stem cells can be efficiently differentiated into retinal organoids with polarized, laminated neural retina harboring all retinal cell types by the Hypoxia-Induced Generation of Photoreceptor in Retinal Organoids (HIPRO) protocol. In our recent publication, we modified the HIPRO protocol on the basis of comparative transcriptome analyses to facilitate photoreceptor biogenesis and maturation. Here, we provide a detailed protocol for efficient generation of retinal organoids from mouse pluripotent stem cells.
View Article and Find Full Text PDFThe primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies.
View Article and Find Full Text PDFHuman pluripotent stem cells (PSCs) can be differentiated into retinal organoids with proper neural layer organization, yet the protocols are technically challenging and time consuming. We have modified a widely used differentiation protocol by switching all- retinoic acid with 9- retinal to accelerate photoreceptor differentiation and improve morphogenesis. In this report, we provide a detailed and improved protocol to generate retinal organoids from human pluripotent stem cells.
View Article and Find Full Text PDFReliable drug therapy with injectable intravitreal implants requires implants of consistent quality. The purpose of this study was to prepare dexamethasone-poly(d,l-lactide-co-glycolide) (PLGA) biodegradable implants and assess implant quality within and between batches for different polymer compositions. Implants containing 20% w/w dexamethasone with 3 theoretical rates of release (fast, intermediate, and slow) were manufactured with decreasing proportion of acid-terminated PLGA (50:50) and increasing proportion of ester-terminated PLGA (50:50) in a batch process using hot-melt extrusion.
View Article and Find Full Text PDFPurpose: Retinal organoids (ROs) derived from human pluripotent stem cells largely recapitulate key features of in vivo retinal development, thus permitting the study of retinogenesis, disease modeling, and therapeutic development. However, the complexities of current protocols limit the use of this in vitro system in applications requiring large-scale production of organoids. Currently, widely used methods require the isolation of presumed optic vesicle-like structures from adherent cultures by dissection, a labor-intensive and time-consuming step that involves extensive practice and training.
View Article and Find Full Text PDFPurpose: Accurate administration of radiotracer dose is essential to positron emission tomography (PET) image quality and quantification. Misadministration (infiltration) of the dose can affect PET/computed tomography results and lead to unnecessary or inappropriate treatments and procedures. Quality control efforts ensure accuracy of the administered dose; however, they fail to ensure complete delivery of the dose into the patient's circulation.
View Article and Find Full Text PDFPurpose: Retinal organoids generated from human pluripotent stem cells exhibit considerable variability during differentiation. Our goals are to assess developmental maturity of the neural retina in vitro and design improved protocols based on objective criteria.
Methods: We performed transcriptome analyses of developing retinal organoids from human embryonic and induced pluripotent stem cell lines and utilized multiple bioinformatic tools for comparative analysis.
Stem cell-derived retinal organoids recapitulate many landmarks of in vivo differentiation but lack functional maturation of distinct cell types, especially photoreceptors. Using comprehensive temporal transcriptome analyses, we show that transcriptome shift from postnatal day 6 (P6) to P10, associated with morphogenesis and synapse formation during mouse retina development, was not evident in organoids, and co-expression clusters with similar patterns included different sets of genes. Furthermore, network analysis identified divergent regulatory dynamics between developing retina in vivo and in organoids, with temporal dysregulation of specific signaling pathways and delayed or reduced expression of genes involved in photoreceptor function(s) and survival.
View Article and Find Full Text PDFPET/CT radiotracer infiltration is not uncommon and is often outside the imaging field of view. Infiltration can negatively affect image quality, image quantification, and patient management. Until recently, there has not been a simple way to routinely practice PET radiopharmaceutical administration quality control and quality assurance.
View Article and Find Full Text PDFPurpose: Each year in the United States, approximately 18.5 million nuclear medicine procedures are performed. Various quality control measures are implemented to reduce image errors and improve quantification of radiotracer distribution.
View Article and Find Full Text PDFIntroduction: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for limb motor symptoms in Parkinson's disease (PD); however, its effect on vocal motor function has yielded conflicted and highly variable results. The present study investigated the effects of STN-DBS on the mechanisms of vocal production and motor control.
Methods: A total of 10 PD subjects with bilateral STN-DBS implantation were tested with DBS ON and OFF while they performed steady vowel vocalizations and received randomized upward or downward pitch-shift stimuli (±100 cents) in their voice auditory feedback.
Flupirtine, a nonopioid analgesic drug, is effective in treating neonatal seizures. However, its brain delivery and pharmacokinetics are unknown in neonatal mammals. The purpose of this study was to determine the pharmacokinetics of flupirtine and the formation of its active metabolite D-13223 in various tissues such as brain in neonate animals.
View Article and Find Full Text PDFInfiltrations of 18F-fluorodeoxyglucose (FDG) injections affect positron emission tomography/computed tomography (PET/CT) image quality and quantification. A device using scintillation sensors (Lucerno Dynamics, Cary, NC) provides dynamic measurements acquired during FDG uptake to identify and characterize radioactivity near the injection site prior to patient imaging. Our aim was to compare sensor measurements against dynamic PET image acquisition, our proposed reference in assessing injection quality during the uptake period.
View Article and Find Full Text PDFJ Child Adolesc Psychopharmacol
October 2019
Objectives: Prior studies have shown that youth with bipolar disorder demonstrate neurofunctional changes in key prefrontal and subcortical brain regions implicated in emotional regulation following treatment with pharmacological agents. We recently reported a large response rate (>60%) to quetiapine (QUET) for treating depressive symptoms in adolescents with bipolar depression. This study investigates the neurofunctional effects of QUET using functional magnetic resonance imaging (fMRI).
View Article and Find Full Text PDFRetbindin (Rtbdn) is a novel protein of unknown function found exclusively in the retina. Recently, our group has suggested, from in silico analysis of the peptide sequence and in vitro binding data, that Rtbdn could function to bind riboflavin (RF) and its derivatives flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), collectively known as flavins. Here we confirm that Rtbdn is capable of flavin binding and that this characteristic can protect photoreceptors from flavin-sensitized light damage.
View Article and Find Full Text PDFIntroduction: DNA nanoparticles (NPs) comprising polylysine conjugated to polyethylene glycol efficiently target murine photoreceptors and the retinal pigment epithelium (RPE) and lead to long-term phenotypic improvement in models of retinal degeneration. Advancing this technology requires testing in a large animal model, particularly with regard to safety. So, herein we evaluate NPs in non-human primates (baboon).
View Article and Find Full Text PDFThe subthalamic nucleus is a key site controlling motor function in humans. Deep brain stimulation of the subthalamic nucleus can improve movements in patients with Parkinson's disease; however, for unclear reasons, it can also have cognitive effects. Here, we show that the human subthalamic nucleus is monosynaptically connected with cognitive brain areas such as the prefrontal cortex.
View Article and Find Full Text PDFA novel quality control and quality assurance device provides time-activity curves that can identify and characterize PET/CT radiotracer infiltration at the injection site during the uptake phase. The purpose of this study was to compare rates of infiltration detected by the device with rates detected by physicians. We also assessed the value of using the device to improve injection results in our center.
View Article and Find Full Text PDFThe interface between the neural retina and the retinal pigment epithelium (RPE) is critical for several processes, including visual pigment regeneration and retinal attachment to the RPE. One of its most important functions is the exchange of metabolites between the photoreceptors and RPE because photoreceptor cells have very high energy demands, largely satisfied by oxidative metabolism. The riboflavin (RF) cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), are two key cofactors involved in oxidative metabolism.
View Article and Find Full Text PDF