Angew Chem Int Ed Engl
March 2025
Tailoring local environments of active sites to match targeted configuration of key species is significant for controlling reaction pathways in selective hydrogenations. Herein, differently typed Pd sites are introduced onto Cu catalysts to tune the local environment of Cu sites for controlling the configuration of semi-hydrogenation pathway of propyne hydrogenation used in production of polymer-grade propylene. Detailed structure characterizations demonstrate the controllable construction of Pd single-atom and Pd ensemble sites modified Cu surfaces and PdCu alloy via fine tuning the Pd/Cu ratios.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Pd-NiGa catalyst for alkyne semi-hydrogenation.
View Article and Find Full Text PDFJ Am Chem Soc
February 2024
Alkyne hydrogenation on palladium-based catalysts modified with silver is currently used in industry to eliminate trace amounts of alkynes in alkenes produced from steam cracking and alkane dehydrogenation processes. Intensive efforts have been devoted to designing an alternative catalyst for improvement, especially in terms of selectivity and catalyst cost, which is still far away from that as expected. Here, we describe an atomic design of a high-performance Ni-based intermetallic catalyst aided by active machine learning combined with density functional theory calculations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
Precisely tailoring the distance between adjacent metal sites to match adsorption configurations of key species for the targeted reaction pathway is a great challenge in heterogeneous catalysis. Here, we report a proof-of-concept study on the atomically sites-tailored pathway in Pd-catalyzed acetylene hydrogenation, i.e.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2012
Sulfonated polyethersulfone (SPES) and poly (acrylonitrile-co-acrylic acid-co-vinyl pyrrolidone) (P(AN-AA-VP)), which provided sulfonic acid (-SO(3)H) and carboxylic acid groups (-COOH), respectively, were used to modify polyethersulfone (PES) membrane with a heparin-like surface by blending method. The SPES was prepared by sulfonation of PES using chlorosulfonic acid as the sulfonating agent, while the P(AA-AN-VP) was prepared through a free radical polymerization. The PES and modified PES membranes were prepared by a phase-inversion technique; the modified membranes showed lowered protein (bovine serum albumin, BSA; bovine serum fibrinogen, FBG) adsorption and suppressed platelet adhesion.
View Article and Find Full Text PDF