Introduction: An ethics-guided decision-making framework was developed for applying pathology-supported genetic testing, a multifaceted pharmacodiagnostic approach that translates population risk stratification into clinical utility. We introduce this service, supported by the Open Genome Project, which aligns with the beneficence principle in personalized medicine.
Methods: Genetic testing of six noncommunicable disease pathways was conducted as part of a pilot program, benchmarked against a readiness checklist for implementation of genomic medicine in Africa.
Lipid metabolism may impact disability in people with multiple sclerosis (pwMS). Fifty-one pwMS entered an ultrasound and MRI study, of whom 19 had followed a pathology-supported genetic testing program for more than 10 years (pwMS-ON). Genetic variation, blood biochemistry, vascular blood flow velocities, diet and exercise were investigated.
View Article and Find Full Text PDFFront Oncol
September 2021
Research performed in South African (SA) breast, ovarian and prostate cancer patients resulted in the development of a rapid BRCA point-of-care (POC) assay designed as a time- and cost-effective alternative to laboratory-based technologies currently used for first-tier germline DNA testing. In this study the performance of the new assay was evaluated for use on a portable screening device (ParaDNA), with the long-term goal to enable rollout at POC as an inventive step to meet the World Health Organization's sustainable development goals for Africa. DNA samples for germline testing were obtained retrospectively from 50 patients with early-stage hormone receptor-positive breast cancer referred for genomic tumor profiling (MammaPrint).
View Article and Find Full Text PDFIn this Review (Part I), we investigate the scientific evidence that multiple sclerosis (MS) is caused by the death of oligodendrocytes, the cells that synthesize myelin, due to a lack of biochemical and nutritional factors involved in mitochondrial energy production in these cells. In MS, damage to the myelin sheaths surrounding nerve axons causes disruption of signal transmission from the brain to peripheral organs, which may lead to disability. However, the extent of disability is not deterred by the use of MS medication, which is based on the autoimmune hypothesis of MS.
View Article and Find Full Text PDFIn Part I of this Review we evaluated the scientific evidence for a Metabolic Model of multiple sclerosis (MS). Part II outlines the implementation of an adaptive pathology-supported genetic testing (PSGT) algorithm aimed at preventing/reversing disability in two illustrative MS cases, starting with a questionnaire-based risk assessment, including family history and lifestyle factors. Measurement of iron, vitamin B12, vitamin D, cholesterol and homocysteine levels identified biochemical deficits in both cases.
View Article and Find Full Text PDFBackground: Multiple sclerosis is a disorder related to demyelination of axons. Iron is an essential cofactor in myelin synthesis. Previously, we described two children (males of mixed ancestry) with relapsing-remitting multiple sclerosis (RRMS) where long-term remission was achieved by regular iron supplementation.
View Article and Find Full Text PDFIn contrast to malaria, multiple sclerosis (MS) is infrequently found in Black Africans. We describe a 29 year old Nigerian female who developed an MS-like condition with symptoms similar to relapsing-remitting MS following malaria infection, leading to a diagnosis of MS. However, absence of hyperintense lesions in the brain and spinal cord presented a conundrum since not all the diagnostic criteria for MS were met.
View Article and Find Full Text PDFGenomic medicine is based on the knowledge that virtually every medical condition, disease susceptibility or response to treatment is caused, regulated or influenced by genes. Genetic testing may therefore add value across the disease spectrum, ranging from single-gene disorders with a Mendelian inheritance pattern to complex multi-factorial diseases. The critical factors for genomic risk prediction are to determine: (1) where the genomic footprint of a particular susceptibility or dysfunction resides within this continuum, and (2) to what extent the genetic determinants are modified by environmental exposures.
View Article and Find Full Text PDF