Nuclear receptor subfamily 1 group D member 1 (NR1D1, also known as Rev-erbα) is a nuclear transcription factor that is part of the molecular clock encoding circadian rhythms and may link daily rhythms with metabolism and inflammation. NR1D1, unlike most nuclear receptors, lacks a ligand-dependent activation function domain 2 and is a constitutive transcriptional repressor. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex.
View Article and Find Full Text PDFMost physiological processes in mammals are subjected to daily oscillations that are governed by a circadian system. The circadian rhythm orchestrates metabolic pathways in a time-dependent manner and loss of circadian timekeeping has been associated with cellular and system-wide alterations in metabolism, redox homeostasis, and inflammation. Here, we investigated the expression of clock and clock-controlled genes in multiple tissues (suprachiasmatic nucleus, spinal cord, gastrocnemius muscle, and liver) from mutant hSOD1-linked amyotrophic lateral sclerosis (ALS) mouse models.
View Article and Find Full Text PDFPharmacol Res Perspect
August 2020
Astrocytes play a key role in the progression of amyotrophic lateral sclerosis (ALS) by actively inducing the degeneration of motor neurons. Motor neurons isolated from receptor for advanced glycation end products (RAGE)-knockout mice are resistant to the neurotoxic signal derived from ALS-astrocytes. Here, we confirmed that in a co-culture model, the neuronal death induced by astrocytes over-expressing the ALS-linked mutant hSOD1 is prevented by the addition of the RAGE inhibitors FPS-ZM1 or RAP.
View Article and Find Full Text PDFFatty acid binding proteins (FABPs) are key regulators of lipid metabolism, energy homeostasis, and inflammation. They participate in fatty acid metabolism by regulating their uptake, transport, and availability of ligands to nuclear receptors. In the adult brain, FABP7 is especially abundant in astrocytes that are rich in cytoplasmic granules originated from damaged mitochondria.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons. Astrocytes from diverse ALS models induce motor neuron death in co-culture. Enhancing NAD availability, or increasing the expression of the NAD-dependent deacylases SIRT3 and SIRT6, abrogates their neurotoxicity in cell culture models.
View Article and Find Full Text PDFSirtuins (SIRTs) are NAD-dependent deacylases that play a key role in transcription, DNA repair, metabolism, and oxidative stress resistance. Increasing NAD availability regulates endogenous SIRT activity, leading to increased resistance to oxidative stress and decreased mitochondrial reactive oxygen production in multiple cell types and disease models. This protection, at least in part, depends on the activation of antioxidant mitochondrial proteins.
View Article and Find Full Text PDFMutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. Several lines of evidence have shown that SOD1 mutations cause ALS through a gain of a toxic function that remains to be fully characterized. A significant share of our understanding of the mechanisms underlying the neurodegenerative process in ALS comes from the study of rodents over-expressing ALS-linked mutant hSOD1.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. The molecular mechanism underlying the progressive degeneration of motor neuron remains uncertain but involves a non-cell autonomous process. In acute injury or degenerative diseases astrocytes adopt a reactive phenotype known as astrogliosis.
View Article and Find Full Text PDFSignificance: Nicotinamide adenine dinucleotide (NAD) participates in redox reactions and NAD-dependent signaling processes, which involve the cleavage of NAD coupled to posttranslational modifications of proteins or the production of second messengers. Either as a primary cause or as a secondary component of the pathogenic process, mitochondrial dysfunction and oxidative stress are prominent features of several neurodegenerative diseases. Activation of NAD-dependent signaling pathways has a major effect in the capacity of the cell to modulate mitochondrial function and counteract the deleterious effects of increased oxidative stress.
View Article and Find Full Text PDFIntroduction: Glycating stress can occur together with oxidative stress during neurodegeneration and contribute to the pathogenic mechanism. Nerve growth factor (NGF) accumulates in several neurodegenerative diseases. Besides promoting survival, NGF can paradoxically induce cell death by signaling through the p75 neurotrophin receptor (p75).
View Article and Find Full Text PDF