Recent advances in the design of convolutional neural networks have shown that performance can be enhanced by improving the ability to represent multi-scale features. However, most existing methods either focus on designing more sophisticated attention modules, which leads to higher computational costs, or fail to effectively establish long-range channel dependencies, or neglect the extraction and utilization of structural information. This work introduces a novel module, the Multi-Branch Concatenation (MBC), designed to process input tensors and extract multi-scale feature maps.
View Article and Find Full Text PDF