Retinal blood vessels are the only blood vessels in the human body that can be observed non-invasively. Changes in vessel morphology are closely associated with hypertension, diabetes, cardiovascular disease and other systemic diseases, and computers can help doctors identify these changes by automatically segmenting blood vessels in fundus images. If we train a highly accurate segmentation model on one dataset (source domain) and apply it to another dataset (target domain) with a different data distribution, the segmentation accuracy will drop sharply, which is called the domain shift problem.
View Article and Find Full Text PDFFetal pose estimation in 3D ultrasound (US) involves identifying a set of associated fetal anatomical landmarks. Its primary objective is to provide comprehensive information about the fetus through landmark connections, thus benefiting various critical applications, such as biometric measurements, plane localization, and fetal movement monitoring. However, accurately estimating the 3D fetal pose in US volume has several challenges, including poor image quality, limited GPU memory for tackling high dimensional data, symmetrical or ambiguous anatomical structures, and considerable variations in fetal poses.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are crucial for effective treatment.
View Article and Find Full Text PDFCurrent assessment methods for diabetic foot ulcers (DFUs) lack objectivity and consistency, posing a significant risk to diabetes patients, including the potential for amputations, highlighting the urgent need for improved diagnostic tools and care standards in the field. To address this issue, the objective of this study was to develop and evaluate the Smart Diabetic Foot Ulcer Scoring System, ScoreDFUNet, which incorporates artificial intelligence (AI) and image analysis techniques, aiming to enhance the precision and consistency of diabetic foot ulcer assessment. ScoreDFUNet demonstrates precise categorization of DFU images into "ulcer," "infection," "normal," and "gangrene" areas, achieving a noteworthy accuracy rate of 95.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is a severe ocular complication of diabetes that can lead to vision damage and even blindness. Currently, traditional deep convolutional neural networks (CNNs) used for DR grading tasks face two primary challenges: (1) insensitivity to minority classes due to imbalanced data distribution, and (2) neglecting the relationship between the left and right eyes by utilizing the fundus image of only one eye for training without differentiating between them. To tackle these challenges, we proposed the DRGCNN (DR Grading CNN) model.
View Article and Find Full Text PDFThe Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
July 2019
A color fundus image is an image of the inner wall of the eyeball taken with a fundus camera. Doctors can observe retinal vessel changes in the image, and these changes can be used to diagnose many serious diseases such as atherosclerosis, glaucoma, and age-related macular degeneration. Automated segmentation of retinal vessels can facilitate more efficient diagnosis of these diseases.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2017
The automatic exudate segmentation in colour retinal fundus images is an important task in computer aided diagnosis and screening systems for diabetic retinopathy. In this paper, we present a location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images, which includes three stages: anatomic structure removal, exudate location and exudate segmentation. In anatomic structure removal stage, matched filters based main vessels segmentation method and a saliency based optic disk segmentation method are proposed.
View Article and Find Full Text PDF