Regulatory T cells (Tregs) play crucial roles in maintaining immune tolerance. The transcription factor Foxp3 is a critical regulator of Treg development and function, and its expression is regulated at both transcriptional and post-translational levels. Acetylation by lysine acetyl transferases/lysine deacetylases is one of the main post-translational modifications of Foxp3, which regulate Foxp3's stability and transcriptional activity.
View Article and Find Full Text PDFT cell development and homeostasis are both regulated by TCR signals. Protein phosphorylation and dephosphorylation, which are catalyzed by protein kinases and phosphatases, respectively, serve as important switches controlling multiple downstream pathways triggered by TCR recognition of Ags. It has been well documented that protein tyrosine phosphatases are involved in negative regulation of proximal TCR signaling.
View Article and Find Full Text PDFExcessive activation of dendritic cells (DCs) leads to the development of autoimmune and inflammatory diseases, which has prompted a search for regulators of DC activation. Here we report that Rhbdd3, a member of the rhomboid family of proteases, suppressed the activation of DCs and production of interleukin 6 (IL-6) triggered by Toll-like receptors (TLRs). Rhbdd3-deficient mice spontaneously developed autoimmune diseases characterized by an increased abundance of the TH17 subset of helper T cells and decreased number of regulatory T cells due to the increase in IL-6 from DCs.
View Article and Find Full Text PDFThe placenta is essential for survival and growth of the fetus because it promotes the delivery of nutrients and oxygen from the maternal circulation as well as fetal waste disposal. Mst1 and Mst2 (Mst1/2), key components of the mammalian hpo/Mst signaling pathway, encode two highly conserved Ser/Thr kinases and play important roles in the prevention of tumorigenesis and autoimmunity, control of T cell development and trafficking, and embryonic development. However, their functions in placental development are not fully understood, and the underlying cellular and molecular mechanisms remain elusive.
View Article and Find Full Text PDFCytoplasmic dynein 1 is fundamentally important for transporting a variety of essential cargoes along microtubules within eukaryotic cells. However, in mammals, few mutants are available for studying the effects of defects in dynein-controlled processes in the context of the whole organism. Here, we deleted mouse Dlic1 gene encoding DLIC1, a subunit of the dynein complex.
View Article and Find Full Text PDFIntracellular vesicle transport pathways are critical for neuronal survival and central nervous system development. The Vps-C complex regulates multiple vesicle transport pathways to the lysosome in lower organisms. However, little is known regarding its physiological function in mammals.
View Article and Find Full Text PDFNotch pathway has been demonstrated to regulate cardiovascular development. One important step in Notch pathway is the cleavage of Notch receptor, during which an intracellular fragment of Notch protein is released to activate downstream genes. It is still uncertain whether Adam10, the mammalian homologue of Kuzbanian in Drosophila, is required to activate the Notch pathway during cardiovascular development.
View Article and Find Full Text PDFBackground: Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye.
View Article and Find Full Text PDFWe demonstrate the feasibility of performing a systematic screen for human gene functions in Drosophila by assaying for their ability to induce overexpression phenotypes. Over 1 500 transgenic fly lines corresponding to 236 human genes have been established. In all, 51 lines are capable of eliciting a phenotype suggesting that the human genes are functional.
View Article and Find Full Text PDFADAM23, belonging to ADAM (A Disintegrin And Metalloprotease) protein family, is mainly expressed in brain. P19 cells could differentiate into neuroectodermal cell lineage after cell aggregates have been induced by retinoic acid (RA). In this report, we show that the post-transcriptional and post-translational processes of ADAM23 are regulated during the differentiation of P19 cells.
View Article and Find Full Text PDFRice stripe disease, caused by Rice stripe virus (RSV), may lead to severe or even crippling losses in many rice-cultured countries and regions. As the most important vector of RSV, the small brown planthopper (SBPH) (Laodelphax striatellus) is largely responsible for the epidemic phase of the disease. Therefore, a rapid identification of RSV in the SBPH is of a great need for disease forecasting.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
July 2003
Many human genes determined by genomic sequencing have only few information about their functions. To fill this knowledge gap, the powerful Drosophila genetics was set as a model to elucidate human gene functions effectively. By using germline transformation together with GAL4-UAS system, we studied the possibility of expressing and functionally characterization of human genes in Drosophila.
View Article and Find Full Text PDF