White adipose tissue (WAT) browning is considered a promising strategy to combat obesity and related metabolic diseases. Currently, fat-water fraction (FWF) has been used as a marker for the loss of lipids associated with WAT browning. However, FWF may not be sensitive to metabolic changes and cannot specifically reflect iron-regulated metabolism during browning.
View Article and Find Full Text PDFBackground: In conjunction with an epidemiologically determined treatment window, current radiological acute ischemic stroke practice discerns two lesion (stage) types: core (dead tissue, identified by diffusion-weighted imaging (DWI)) and penumbra (tissue region receiving just enough blood flow to be potentially salvageable, identified by the perfusion diffusion mismatch). However, advancements in preclinical and clinical studies have indicated that this approach may be too rigid, warranting a more fine-grained patient-tailored approach. This study aimed to demonstrate the ability to noninvasively provide insights into the current in vivo stroke lesion cascade.
View Article and Find Full Text PDFBackground: Brown adipose tissue (BAT) is metabolically activatable and plays an important role in obesity and metabolic diseases. With reduced fat-water-fraction (FWF) compared with white adipose tissue (WAT), BAT mass and its functional activation may be quantified with Z-spectra MRI, with built-in FWF and the metabolic amide proton transfer (APT) contrasts.
Purpose: To investigate if Z-spectral MRI can quantify the mass and metabolic activity of adipose tissues.
Thermogenic brown adipose tissue (BAT) has a positive impact on whole-body metabolism. However, in vivo mapping of BAT activity typically relies on techniques involving ionizing radiation, such as [F]fluorodeoxyglucose ([F]FDG) positron emission tomography (PET) and computed tomography (CT). Here we report a noninvasive metabolic magnetic resonance imaging (MRI) approach based on creatine chemical exchange saturation transfer (Cr-CEST) contrast to assess in vivo BAT activity in rodents and humans.
View Article and Find Full Text PDFPurpose: To delineate the alterations in adipose and muscle tissue composition and functionality among healthy young men across varying exercise intensities, which help to elucidate the impact of exercise intensity on weight management and inform fitness planning.
Method: 3D Dixon MRI scans were performed on the neck and supraclavicular area in 10 high-intensity exercises (HIE) athletes, 20 moderate intensity exercises (MIE) athletes and 19 low-intensity exercises non-athlete male controls (NCM). Twelve imaging parameters, including the total volume of muscle, white adipose tissue (WAT), brown adipose tissue (BAT), and the mean fat-water fraction (FWF) within these tissues.
Proton exchange underpins essential mechanisms in diverse MR imaging contrasts. Omega plots have proven effective in mapping proton exchange rates (k) in live human brains, enabling the differentiation of MS lesion activities and characterization of ischemic stroke. However, Omega plots require extended saturation durations (typically 5 to 10 s), resulting in high specific absorption rates (SAR) that can hinder clinical feasibility.
View Article and Find Full Text PDFMagn Reson Imaging
June 2024
Purpose: To derive an analytic expression for the steady-state Chemical Exchange Saturation Transfer (CEST) Z-spectra of a two-pool proton-exchanging system, facilitating simulations and expedited fitting of steady-state Z-spectra.
Method: The analytical expression is derived by directly solving the set of Bloch-McConnell differential equations in matrix form for a two-pool exchanging system, determining water magnetization under steady-state saturation across the entire Z-spectrum. The analytic solution is compared and validated against the numerical solution of Bloch-McConnell equations under prolonged saturation.
Purpose: Early evaluation of β-cell dysfunction of hyperglycemic patients in asymptomatic adults would be valuable for timely prevention of the diabetes. This study aimed to evaluate functional changes in the pancreas using intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and determine whether it could be used as a non-invasive method of assessing β-cell dysfunction.
Methods: This prospective cohort study was conducted from August 2022 to November 2022 in Jinan University Affiliated Guangdong Second General Hospital.
Objective: This study aimed to noninvasively characterize the metabolic alterations in ischemic brain tissues using Z-spectrum-fitted multiparametric chemical exchange saturation transfer-weighted magnetic resonance imaging (CEST-MRI).
Methods: Three sets of Z-spectrum data with saturation power (B) values of 1.5, 2.
Arterioscler Thromb Vasc Biol
October 2023
Background: Specialized brain endothelial cells and human are independently important for neurovascular function, yet whether expression by endothelial cells contributes to brain function is currently unknown. In the present study, we determined whether the loss of endothelial cell impacts brain vascular and neural function.
Methods: We developed /Cdh5(PAC)-CreERT2 () and /Cdh5(PAC)-CreERT2 (, control) mice and induced endothelial cell knockdown with tamoxifen at ≈4 to 5 weeks of age.
Out-of-hospital cardiac arrest is a leading cause of death in the US, with a mortality rate over 90%. Preclinical studies demonstrate that cooling during cardiopulmonary resuscitation (CPR) is highly beneficial, but can be challenging to implement clinically. No medications exist for improving long-term cardiac arrest survival.
View Article and Find Full Text PDFBackground: Conventional gadolinium (Gd)-enhanced MRI is currently used for stratifying the lesion activity of multiple sclerosis (MS) despite limited correlation with disability and disease activity. The stratification of MS lesion activity needs further improvement to better support clinics.
Purpose: To investigate if the novel proton exchange rate ( ) MRI combined with quantitative susceptibility mapping (QSM) may help to further stratify non-enhanced (Gd-negative) MS lesions.
Quantification of proton exchange rate (kex) is a challenge in MR studies. Current techniques either have low resolutions or are dependent on the estimation of parameters that are not measurable. The Omega plot method, on the other hand, provides a direct way for determining kex independent of the agent concentration.
View Article and Find Full Text PDFBackground: Proton exchange rate ( ) magnetic resonance imaging (MRI) has recently been developed, with preliminary results demonstrating its potential for evaluating reactive oxygen species. This prospective cohort study investigated the in different stroke stages and its correlation with stroke severity and prognosis.
Methods: In all, 96 ischemic stroke patients were included in the study.
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation.
View Article and Find Full Text PDFChemical exchange saturation transfer (CEST) imaging is an important molecular magnetic resonance imaging technique that can image numerous low-concentration biomolecules with water-exchangeable protons (such as cellular proteins) and tissue pH. CEST, or more specially amide proton transfer-weighted imaging, has been widely used for the detection, diagnosis, and response assessment of brain tumors, and its feasibility in identifying molecular markers in gliomas has also been explored in recent years. In this paper, after briefing on the basic principles and quantification methods of CEST imaging, we review its early applications in identifying isocitrate dehydrogenase mutation status, MGMT methylation status, 1p/19q deletion status, and H3K27M mutation status in gliomas.
View Article and Find Full Text PDFPurpose: Z-spectrum imaging, defined as the consecutive collection of images after saturating over a range of frequency offsets, has been recently proposed as a method to measure the fat-water fraction by the simultaneous detection of fat and water resonances. By incorporating a binomial pulse irradiated at each offset before the readout, the spectral selectivity of the sequence can be further amplified, making it possible to monitor the subtle proton resonance frequency shift that follows a change in temperature.
Methods: We tested the hypothesis in aqueous and cream phantoms and in healthy mice, all under thermal challenge.
Background: Nowadays, the drive towards high-field MRI is fueled by the pursuit of higher signal-to-noise ratio, spatial resolution, and imaging speed. However, high field strength is associated with field inhomogeneity, acceleration of T * decay, and increased chemical shift, which may pose challenges to conventional MRI for fat quantification in complex tissues such as bone marrow. With proton MRI spectroscopy ( H-MRS), on the other hand, it is difficult to produce high resolution.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is among the most lethal cancer types despite great advancement in overall survival of the patients over the last decades. Surgical resection or partial hepatectomy has been approved as the curative treatment for early-stage HCC patients however only up to 30% of them are eligible for the procedures. Natural killer (NK) cells are cytotoxic lymphocytes recognized for killing virally infected cells and improving immune functions for defending the body against malignant cells.
View Article and Find Full Text PDFObjectives: To comprehensively and noninvasively risk-stratify glioma grade, isocitrate dehydrogenase (IDH) genotype, and 1p/19q codeletion status using multi-contrast Z-spectral magnetic resonance imaging (MRI).
Methods: One hundred and thirteen patients with glioma were retrospectively included. Multiple contrasts contributing to Z-spectra, including direct saturation of water (DSW), semi-solid magnetization transfer contrast (MTC), amide proton transfer (APT) effect, aliphatic nuclear Overhauser effect, and the 2-ppm chemical exchange saturation transfer peak (CEST@2ppm), were fitted with five individual Lorentzian functions.
Background: The non-invasive characterization of glioma metabolites would greatly assist the management of glioma patients in the clinical setting. This study investigated the applicability of intra-subject inter-metabolite correlation analyses for differentiating glioma malignancy and proliferation.
Methods: A total of 17 negative controls (NCs), 39 low-grade gliomas (LGGs) patients, and 25 high-grade gliomas (HGGs) subjects were included in this retrospective study.
The purpose of this work was to demonstrate the feasibility of neurite orientation dispersion and density imaging (NODDI) in characterizing the brain tissue microstructural changes of middle cerebral artery occlusion (MCAO) in rats at 3T MRI, and to validate NODDI metrics with histology. A multi-shell diffusion MRI protocol was performed on 11 MCAO rats and 10 control rats at different post-operation time points of 0.5, 2, 6, 12, 24 and 72 h.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the most frequent malignancy of the liver, which is considered the fourth leading cause of cancer-related death in the United States. Liver transplant and surgical resection are curative treatments for HCC, but only 10-15% of HCC patients are eligible candidates. The FDA-approved sorafenib is a multi-kinase inhibitor systemic therapy for advanced HCC that extends the overall survival by over 3 months when compared with placebo.
View Article and Find Full Text PDFPurpose: Z-spectral MRI data were analyzed to produce multiparametric metabolic and microenvironmental contrasts for identifying intervertebral discs with/without pain symptom and sore pain.
Methods: Z-spectra data were collected from the lumbar discs of 26 patients with non-specific chronic low bck pain (CLBP) and 21 asymptomatic controls (AC) with a chemical exchange saturation transfer (CEST). Data were fitted to quantify the CEST effects from glycosaminoglycan, amide proton transfer (APT), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer contrast effects, and the direct saturation of water.