Publications by authors named "Keito Amai"

Sperm identification is crucial in sexual assault cases. While microscopic analysis is the gold standard for sperm detection, it is a laborious procedure even for trained personnel. Reverse transcription-quantitative real-time PCR (RT-qPCR) can enhance the screening by detecting sperm-specific mRNA markers, such as protamine 2 (PRM2).

View Article and Find Full Text PDF

Forensic sample screening is important for establishing an effective DNA typing workflow. The detection of sex-specific markers in forensic samples highlights the necessity for further analysis. Y-chromosome DNA can confirm male contributions, but female contributions are difficult to confirm using DNA-based methods.

View Article and Find Full Text PDF

DNA typing based on short tandem repeat (STR) analysis is an effective forensic method for human identification. Some STRs are contained within the introns of protein-coding genes and are transcribed as pre-mRNAs. However, the possibility of using RNA for STR analysis is yet to be fully explored.

View Article and Find Full Text PDF

Saliva samples are frequently collected at crime scenes. Salivary mRNA profiling, such as that of histatin 3 (HTN3), is a highly specific approach that overcomes the limitation of traditional amylase tests. However, typical mRNA detection methods based on reverse transcription PCR (RT-PCR) are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Enzymes of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase superfamilies are involved in the reduction of compounds containing a ketone group. In most cases, multiple isoforms appear to be involved in the reduction of a compound, and the enzyme(s) that are responsible for the reaction in the human liver have not been elucidated. The purpose of this study was to quantitatively evaluate the contribution of each isoform to reduction reactions in the human liver.

View Article and Find Full Text PDF

The aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies are responsible for the reduction in compounds containing the aldehyde, ketone, and quinone groups. In humans, 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 6 SDR isoforms (CBR1, CBR3, CBR4, HSD11B1, DHRS4, and DCXR) have been found to catalyze the reduction in xenobiotics, but their hepatic expression levels are unclear. The purpose of this study is to determine the absolute mRNA expression levels of these 18 isoforms in the human liver.

View Article and Find Full Text PDF