Introduction: Placental growth factor (PlGF) may regulate cerebrovascular permeability. We hypothesized that white matter interstitial fluid accumulation, estimated via magnetic resonance imaging (MRI) free water (FW), would explain the associations between elevated PlGF, white matter hyperintensities (WMH), and cognitive impairment.
Methods: MarkVCID consortium participants ≥55 years old with plasma PlGF and brain MRI were included.
Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. We employ an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compare this model with APOE and polygenic risk score models across genetic ancestry groups (Hispanic Latino American sample: 610 patients with 126 cases; African American sample: 440 patients with 84 cases; East Asian American sample: 673 patients with 75 cases), using electronic health records from UCLA Health for discovery and the All of Us cohort for validation.
View Article and Find Full Text PDFCerebrovascular disease (CVD) and Alzheimer's disease (AD) often co-occur and may impact specific cognitive domains. This study's goal was to determine effects of CVD and AD burden on cross-sectional and longitudinal executive function (EF) and memory in older adults. Longitudinally followed participants from the National Alzheimer Coordinating Center database (n = 3342) were included.
View Article and Find Full Text PDFWhile animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD.
View Article and Find Full Text PDFBackground: Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited.
Methods: We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation.
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline.
View Article and Find Full Text PDFBackground: Previous studies have established a strong link between late-onset epilepsy (LOE) and Alzheimer's disease (AD). However, their shared genetic risk beyond the gene remains unclear. Our study sought to examine the shared genetic factors of AD and LOE, interpret the biological pathways involved, and evaluate how AD onset may be mediated by LOE and shared genetic risks.
View Article and Find Full Text PDFBackground: Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited.
Methods: We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation.
Accumulating evidence suggests amyloid and tau-related neurodegeneration may play a role in development of late-onset epilepsy of unknown etiology (LOEU). In this article, we review recent evidence that epilepsy may be an initial manifestation of an amyloidopathy or tauopathy that precedes development of Alzheimer's disease (AD). Patients with LOEU demonstrate an increased risk of cognitive decline, and patients with AD have increased prevalence of preceding epilepsy.
View Article and Find Full Text PDFSleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample of 14 healthy human participants (11 female; mean 63.
View Article and Find Full Text PDFDynamic resting state functional connectivity (RSFC) characterizes time-varying fluctuations of functional brain network activity. While many studies have investigated static functional connectivity, it has been unclear whether features of dynamic functional connectivity are associated with neurodegenerative diseases. Popular sliding-window and clustering methods for extracting dynamic RSFC have various limitations that prevent extracting reliable features to address this question.
View Article and Find Full Text PDFJ Alzheimers Dis
August 2023
Epileptic activity is known to exacerbate Alzheimer's disease (AD) pathology and worsen disease course. However, few studies have assessed whether treating epileptic activity with antiseizure drugs (ASDs) can improve patient outcomes. The current study by Hautecloque-Raysz et al.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the accumulation of amyloid- and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease involving cognitive impairment and abnormalities in speech and language. Here, we examine how AD affects the fidelity of auditory feedback predictions during speaking. We focus on the phenomenon of speaking-induced suppression (SIS), the auditory cortical responses' suppression during auditory feedback processing.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia, progressively impairing memory and cognition. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD.
View Article and Find Full Text PDFIntroduction: Sleep-wake disturbances are a prominent feature of Alzheimer's disease (AD). Atypical (non-amnestic) AD syndromes have different patterns of cortical vulnerability to AD. We hypothesized that atypical AD also shows differential vulnerability in subcortical nuclei that will manifest as different patterns of sleep dysfunction.
View Article and Find Full Text PDFTau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both.
View Article and Find Full Text PDFBackground: Neuronal- and circuit-level abnormalities of excitation and inhibition are shown to be associated with tau and amyloid-beta (Aβ) in preclinical models of Alzheimer's disease (AD). These relationships remain poorly understood in patients with AD.
Methods: Using empirical spectra from magnetoencephalography and computational modeling (neural mass model), we examined excitatory and inhibitory parameters of neuronal subpopulations and investigated their specific associations to regional tau and Aβ, measured by positron emission tomography, in patients with AD.
Importance: Sleep disturbance is common among patients with neurodegenerative diseases. Examining the subcortical neuronal correlates of sleep disturbances is important to understanding the early-stage sleep neurodegenerative phenomena.
Objectives: To examine the correlation between the number of important subcortical wake-promoting neurons and clinical sleep phenotypes in patients with Alzheimer disease (AD) or progressive supranuclear palsy (PSP).
Since the first demonstrations of network hyperexcitability in scientific models of Alzheimer's disease, a growing body of clinical studies have identified subclinical epileptiform activity and associated cognitive decline in patients with Alzheimer's disease. An obvious problem presented in these studies is lack of sensitive measures to detect and quantify network hyperexcitability in human subjects. In this study we examined whether altered neuronal synchrony can be a surrogate marker to quantify network hyperexcitability in patients with Alzheimer's disease.
View Article and Find Full Text PDFImportance: Network hyperexcitability may contribute to cognitive dysfunction in patients with Alzheimer disease (AD).
Objective: To determine the ability of the antiseizure drug levetiracetam to improve cognition in persons with AD.
Design, Setting, And Participants: The Levetiracetam for Alzheimer's Disease-Associated Network Hyperexcitability (LEV-AD) study was a phase 2a randomized double-blinded placebo-controlled crossover clinical trial of 34 adults with AD that was conducted at the University of California, San Francisco, and the University of Minnesota, Twin Cities, between October 16, 2014, and July 21, 2020.
Introduction: Neurophysiological manifestations selectively associated with amyloid beta and tau depositions in Alzheimer's disease (AD) are useful network biomarkers to identify peptide specific pathological processes. The objective of this study was to validate the associations between reduced neuronal synchrony within alpha oscillations and neurofibrillary tangle (NFT) density in autopsy examination, in patients with AD.
Methods: In a well-characterized clinicopathological cohort of AD patients (n = 13), we quantified neuronal synchrony within alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillations, using magnetoencephalography during the disease course, within six selected neocortical and hippocampal regions, including angular gyrus, superior temporal gurus, middle frontal gyrus, primary motor cortex, CA1, and subiculum, and correlated these with regional NFT density quantified at histopathological examination.