Background And Objectives: Moyamoya disease (MMD) is a rare noninflammatory disorder involving progressive intracranial vasculopathy and impaired cerebral blood flow in the anterior circulation, resulting in stroke and cognitive impairment. We aimed to characterize cognitive impairment and the possible predictive value of sociodemographic and clinical characteristics of adults with MMD.
Methods: This cross-sectional study examined neurocognitive performance in a group of 42 consecutive adult patients (mean age = 40.
The cell volume fraction (CVF) of the human brain is high (~82%) and is preserved across healthy aging while the brain declines in volume. These two observations, supported by several independent techniques, suggest that CVF is an important structural parameter. A new biophysical model is presented that incorporates CVF into the Goldman equation of classical membrane electrophysiology.
View Article and Find Full Text PDFQuantitative measurement of the tissue sodium concentration (TSC) provides a metric for tissue cell volume fraction for monitoring tumor responses to therapy and neurodegeneration in the brain as well as applications outside the central nervous system such as the fixed charge density in cartilage. Despite the low detection sensitivity of the sodium MR signal compared to the proton signal and the requirement for a long repetition time to minimize longitudinal magnetization saturation, acquisition time has been reduced to less than 10 min for a nominal isotropic voxel size of 3.3 mm with the improved acquisition efficiency of twisted projection imaging (TPI) at 9.
View Article and Find Full Text PDFPurpose: Spatial and temporal patterns of response of human glioblastoma to fractionated chemoradiation are described by changes in the bioscales of residual tumor volume (RTV), tumor cell volume fraction (CVF), and tumor cell kill (TCK), as derived from tissue sodium concentration (TSC) measured by quantitative sodium MRI at 3 Tesla. These near real-time patterns during treatment are compared with overall survival.
Experimental Design: Bioscales were mapped during fractionated chemoradiation therapy in patients with glioblastomas ( = 20) using TSC obtained from serial quantitative sodium MRI at 3 Tesla and a two-compartment model of tissue sodium distribution.
Purpose: Non-uniform B1 excitation and high specific absorption rates (SAR) compromise proton MR imaging of human brain at 9.4 T (400.5 MHz).
View Article and Find Full Text PDFBackground: Venous outflow obstructions are rare anatomic findings that can appear with symptoms of elevated intracranial pressure, including headache and vision loss, and can be mistaken for more common diagnoses, such as idiopathic intracranial hypertension (IIH) or cerebral venous sinus thrombosis (CVST). Although venous outflow obstructions have been reported in rare bone dysplasias and congenital abnormalities, to date they have not been reported in renal osteodystrophy (ROD), a relatively common disorder seen in patients with chronic kidney disease.
Case Description: In this case, the authors describe a patient with marked intracranial hypertension from jugular foramen stenosis secondary to ROD.
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s.
View Article and Find Full Text PDFAn initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm.
View Article and Find Full Text PDFImportance: Atherosclerotic vertebrobasilar (VB) occlusive disease is a significant etiology of posterior circulation stroke, with regional hypoperfusion as an important potential contributor to stroke risk.
Objective: To test the hypothesis that, among patients with symptomatic VB stenosis or occlusion, those with distal blood flow compromise as measured by large-vessel quantitative magnetic resonance angiography (QMRA) are at higher risk of subsequent posterior circulation stroke.
Design, Setting, And Participants: A prospective, blinded, longitudinal cohort study was conducted at 5 academic hospital-based centers in the United States and Canada; 82 patients from inpatient and outpatient settings were enrolled.
Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.
View Article and Find Full Text PDFBackground And Purpose: Atherosclerotic vertebrobasilar disease is an important cause of posterior circulation stroke. To examine the role of hemodynamic compromise, a prospective multicenter study, Vertebrobasilar Flow Evaluation and Risk of Transient Ischemic Attack and Stroke (VERiTAS), was conducted. Here, we report clinical features and vessel flow measurements from the study cohort.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
February 2015
Measurement of volume flow rates in major cerebral vessels can be used to evaluate the hemodynamic effects of cerebrovascular disease. However, both age and vascular anatomy can affect flow rates independent of disease. We prospectively evaluated 325 healthy adult volunteers using phase contrast quantitative magnetic resonance angiography to characterize these effects on cerebral vessel flow rates and establish clinically useful normative reference values.
View Article and Find Full Text PDFBackground: The optimal revascularization strategy for symptomatic adult moyamoya remains controversial. Whereas direct bypass offers immediate revascularization, indirect bypass can effectively induce collaterals over time.
Objective: Using angiography and quantitative magnetic resonance angiography, we examined the relative contributions of direct and indirect bypass in moyamoya patients after combined direct superficial temporal artery-to-middle cerebral artery (STA-MCA) bypass and indirect encephaloduroarteriosynangiosis (EDAS).
Purpose: To demonstrate the feasibility of performing 39-potassium MR imaging of a human brain.
Methods: 39-Potassium magnetic resonance imaging of a human brain was performed at 9.4 T using a flexible twisted projection imaging acquisition with a nominal isotropic spatial resolution of 10 mm in 40 min using a single-tuned birdcage radiofrequency coil.
Invest Ophthalmol Vis Sci
September 2012
Purpose: To test the intra- and intersubject reproducibility of brain activation patterns that underlie visually guided saccades and word recognition in normally sighted subjects and patients with macular degeneration using functional magnetic resonance imaging (fMRI).
Methods: Ten normally sighted subjects and five patients with macular degeneration were asked to perform two visually guided saccade tasks and two word-recognition tasks during fMRI with behavioral monitoring. The fMRI measurements were repeated three times at intervals of at least 4 weeks between sessions.
Quantitative (31)P magnetic resonance imaging of the whole human brain is often time-consuming even at low spatial resolution due to the low concentrations, long T(1) relaxation times, and low detection sensitivity of phosphorus metabolites. We report herein the results of combining the increased detection sensitivity of an ultra-high field 9.4 T scanner designed for human imaging with a new pulse sequence termed simultaneously imaging of multiple spectral peaks with interleaved excitations and flexible twisted projection imaging readout trajectories to rapidly sample multiple resonances in the (31)P spectrum.
View Article and Find Full Text PDFEmerging applications of sodium bioscales derived from quantitative sodium magnetic resonance imaging assess temporal changes in regional sodium concentration over intervals that vary from hours (monitoring tissue viability in stroke) to weeks (monitoring brain tumor treatment during radiation therapy) or even years (monitoring progression of neurodegenerative disease). Accurate interpretation of such quantitative data requires precise registration between magnetic resonance imaging sessions to avoid session-to-session changes in partial volume effects between normal tissue (∼38 mM sodium concentration), lesions (variable sodium concentration), and cerebrospinal fluid (∼144 mM sodium concentration). The existing Automated Image Registration algorithm is shown to be suitable for rapid, accurate, and precise determination of the transform that aligns sodium magnetic resonance images.
View Article and Find Full Text PDFThis invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field.
View Article and Find Full Text PDFThe rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions.
View Article and Find Full Text PDFThe rapid transverse relaxation of the sodium magnetic resonance signal during spatial encoding causes a loss of image resolution, an effect known as T(2)-blurring. Conventional wisdom suggests that spatial resolution is maximized by keeping the readout duration as short as possible to minimize T(2)-blurring. Flexible twisted projection imaging performed with an ultrashort echo time, relative to T(2), and a long repetition time, relative to T(1), has been shown to be effective for quantitative sodium magnetic resonance imaging.
View Article and Find Full Text PDFBackground: Over one-third of ischaemic strokes occur in the posterior circulation, and a leading cause is atherosclerotic vertebrobasilar disease. Symptomatic vertebrobasilar disease carries a high annual recurrent stroke risk, averaging 10-15% per year. Endovascular angioplasty and stenting are increasingly used but carry risks, and the benefit remains unproven.
View Article and Find Full Text PDFBackground And Purpose: In-stent restenosis (ISR) after angioplasty/stenting for intracranial stenosis has been reported in up to 25% to 30% of patients. Detection and monitoring of ISR relies primarily on serial catheter angiography, because noninvasive imaging methods are typically hampered by stent-related artifact. We examined the value of serial vessel flow measurements using quantitative magnetic resonance angiography (QMRA) in detection of ISR.
View Article and Find Full Text PDFPurpose: To evaluate the effect of 23-sodium ((23)Na) and 17-oxygen ((17)O) magnetic resonance imaging (MRI) at 9.4 (T) on vital signs and cognitive function of the human brain.
Materials And Methods: Vital sign and cognitive function measurements from healthy volunteers (N = 14) positioned outside and at isocenter of a 9.
The quantification of sodium MR images from an arbitrary intensity scale into a bioscale fosters image interpretation in terms of the spatially resolved biochemical process of sodium ion homeostasis. A methodology for quantifying tissue sodium concentration using a flexible twisted projection imaging sequence is proposed that allows for optimization of tradeoffs between readout time, signal-to-noise ratio efficiency, and sensitivity to static field susceptibility artifacts. The gradient amplitude supported by the slew rate at each k-space radius regularizes the readout gradient waveform design to avoid slew rate violation.
View Article and Find Full Text PDF