Objectives: Multiplex immunohistochemistry and immunofluorescence (mIHC/IF) are emerging technologies that can be used to help define complex immunophenotypes in tissue, quantify immune cell subsets, and assess the spatial arrangement of marker expression. mIHC/IF assays require concerted efforts to optimize and validate the multiplex staining protocols prior to their application on slides. The best practice guidelines for staining and validation of mIHC/IF assays across platforms were previously published by this task force.
View Article and Find Full Text PDFWe report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological properties of epithelial regions in digital histopathology whole slide images stained with the SP263 PD-L1 antibody. The first system learns to replicate the pathologist assessment of the Tumor Cell (TC) score with a cut-point for positivity at 25% for patient stratification.
View Article and Find Full Text PDFMultiplex immunofluorescence (MIF) staining of tumor sections combined with computational pathology quantifies phenotypic variants of tumor and immune cells and assesses their spatial relationships. Here, we discuss a MIF panel composed of cytokeratin, PD-L1, PD1, CD8, CD68, and Ki67 applied to non-small cell lung cancer (NSCLC) to demonstrate key components of the immune response to this cancer. We also describe a method of whole-slide multiplex imaging and digital multispectral image analysis.
View Article and Find Full Text PDFThere is an important need in immuno-oncology to develop reliable immunohistochemistry (IHC) to assess the expression of CTLA-4 tumor-infiltrating lymphocytes in human cancers and quantify them with image analysis (IA). We used commercial polyclonal and monoclonal antibodies and characterized three chromogenic cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) assays with suitable specificity and sensitivity for use in formalin-fixed, paraffin-embedded (FFPE) tissues. We found variable numbers of CTLA-4 lymphocytes in multiple types of cancer and secondary lymphoid organs (SLOs) and other normal human tissues.
View Article and Find Full Text PDFTumor programmed cell death ligand-1 (PD-L1) expression is a key biomarker to identify patients with non-small cell lung cancer who may have an enhanced response to anti-programmed cell death-1 (PD-1)/PD-L1 treatment. Such treatments are used in conjunction with PD-L1 diagnostic immunohistochemistry assays. We developed a computer-aided automated image analysis with customized PD-L1 scoring algorithm that was evaluated via correlation with manual pathologist scores and used to determine comparability across PD-L1 immunohistochemistry assays.
View Article and Find Full Text PDFBackground: The safety, efficacy, pharmacokinetics, and pharmacodynamics of the anti-programmed cell death-1 antibody MEDI0680 were evaluated in a phase I, multicenter, dose-escalation study in advanced solid malignancies.
Methods: MEDI0680 was administered intravenously once every 2 weeks (Q2W) or once every 3 weeks at 0.1, 0.
Background: Immune checkpoint therapies (ICTs) targeting the programmed cell death-1 (PD1)/programmed cell death ligand-1 (PD-L1) pathway have improved outcomes for patients with non-small cell lung cancer (NSCLC), particularly those with high PD-L1 expression. However, the predictive value of manual PD-L1 scoring is imperfect and alternative measures are needed. We report an automated image analysis solution to determine the predictive and prognostic values of the product of PD-L1+ cell and CD8+ tumor infiltrating lymphocyte (TIL) densities (CD8xPD-L1 signature) in baseline tumor biopsies.
View Article and Find Full Text PDFContinued developments in immuno-oncology require an increased understanding of the mechanisms of cancer immunology. The immunoprofiling analysis of tissue samples from formalin-fixed, paraffin-embedded (FFPE) biopsies has become a key tool for understanding the complexity of tumor immunology and discovering novel predictive biomarkers for cancer immunotherapy. Immunoprofiling analysis of tissues requires the evaluation of combined markers, including inflammatory cell subpopulations and immune checkpoints, in the tumor microenvironment.
View Article and Find Full Text PDFIntroduction: Durvalumab selectively blocks programmed cell death ligand-1 (PD-L1) binding to programmed cell death-1. Encouraging clinical activity and manageable safety were reported in urothelial carcinoma, non-small-cell lung cancer (NSCLC), hepatocellular carcinoma (HC) and small-cell lung cancer (SCLC) in a multicenter phase I/II study. Safety and clinical activity in recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) were evaluated in the expansion phase.
View Article and Find Full Text PDFThe level of PD-L1 expression in immunohistochemistry (IHC) assays is a key biomarker for the identification of Non-Small-Cell-Lung-Cancer (NSCLC) patients that may respond to anti PD-1/PD-L1 treatments. The quantification of PD-L1 expression currently includes the visual estimation by a pathologist of the percentage (tumor proportional scoring or TPS) of tumor cells showing PD-L1 staining. Known challenges like differences in positivity estimation around clinically relevant cut-offs and sub-optimal quality of samples makes visual scoring tedious and subjective, yielding a scoring variability between pathologists.
View Article and Find Full Text PDFMultiplex immunohistochemistry allows the demonstration of multiple protein antigens in individual histological sections of formalin-fixed paraffin-embedded tumors or other types of tissue. Carefully designed and optimized immunohistochemistry (IHC) assays not only maximize the information available from limited tissues, but also enable a higher level interpretation of that information by demonstrating the histo-anatomical relationships among key cell types which express the included biomarkers. Programmable automated IHC instruments support the development and application of complicated multiplex IHC protocols, help save time and effort, and enhance immunostaining quality and reproducibility.
View Article and Find Full Text PDFBackground: Immuno-oncology and cancer immunotherapies are areas of intense research. The numbers and locations of CD8+ tumor-infiltrating lymphocytes (TILs) are important measures of the immune response to cancer with prognostic, pharmacodynamic, and predictive potential. We describe the development, validation, and application of advanced image analysis methods to characterize multiple immunohistochemistry-derived CD8 parameters in clinical and nonclinical tumor tissues.
View Article and Find Full Text PDFAssessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma.
View Article and Find Full Text PDFAssessment of tumor-infiltrating lymphocytes (TILs) in histopathologic specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible, and reliable immunooncology biomarkers is clear.
View Article and Find Full Text PDFIntroduction: The thymus is a critical organ for the development of the adaptive immune system and thymic epithelial tumors (TETs; thymomas and thymic carcinomas) are often associated with auto-immune paraneoplastic conditions. However, the immunobiology of TETs is not well described. An evaluation of the tumor microenvironment, with particular focus on expression of immunotherapeutic targets, may facilitate and prioritize development of immunotherapy strategies for patients with TETs.
View Article and Find Full Text PDFBackground: A high-quality programmed cell-death ligand 1 (PD-L1) diagnostic assay may help predict which patients are more likely to respond to anti-programmed cell death-1 (PD-1)/PD-L1 antibody-based cancer therapy. Here we describe a PD-L1 immunohistochemical (IHC) staining protocol developed by Ventana Medical Systems Inc. and key analytical parameters of its use in formalin-fixed, paraffin-embedded (FFPE) samples of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC).
View Article and Find Full Text PDFBackground: PD-L1 and CTLA-4 immune checkpoints inhibit antitumour T-cell activity. Combination treatment with the anti-PD-L1 antibody durvalumab and the anti-CTLA-4 antibody tremelimumab might provide greater antitumour activity than either drug alone. We aimed to assess durvalumab plus tremelimumab in patients with advanced squamous or non-squamous non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFVitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N) and V76 (to I, or M) had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA.
View Article and Find Full Text PDFDetailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis.
View Article and Find Full Text PDFObjectives: Using a novel tool based on General Medical Council (GMC) standards, this cross-sectional survey aimed to assess UK medical students' professional attitudes at different stages of the curriculum, and to investigate the influence of the hidden curriculum on these attitudes through exposure to unprofessional behaviour during the medical course.
Methods: An anonymous online questionnaire was developed, reflecting core professional competences outlined in Good Medical Practice. First, third and fifth year students received Section 1: 'Attitudes to professionalism'; third and fifth year students also received Section 2: 'Exposure to unprofessional behaviour'.