Purpose: To present a pulse sequence and mathematical models for quantification of blood-brain barrier water exchange and permeability.
Methods: Motion-compensated diffusion-weighted (MCDW) gradient-and-spin echo (GRASE) pseudo-continuous arterial spin labeling (pCASL) sequence was proposed to acquire intravascular/extravascular perfusion signals from five postlabeling delays (PLDs, 1590-2790 ms). Experiments were performed on 11 healthy subjects at 3 T.
Routine clinical use of absolute PET quantification techniques is limited by the need for serial arterial blood sampling for input function and more importantly by the lack of automated pharmacokinetic analysis tools that can be readily implemented in clinic with minimal effort. PET/MRI provides the ability for absolute quantification of PET probes without the need for serial arterial blood sampling using image-derived input functions (IDIFs). Here we introduce caliPER, a modular and scalable software for simplified pharmacokinetic modeling of PET probes with irreversible uptake or binding based on PET/MR IDIFs and Patlak Plot analysis.
View Article and Find Full Text PDFPurpose: The clinical utility of FDG-PET in diagnosing frontotemporal dementia (FTD) has been well demonstrated over the past decades. On the contrary, the diagnostic value of arterial spin labelling (ASL) MRI - a relatively new technique - in clinical diagnosis of FTD has yet to be confirmed. Using simultaneous PET/MRI, we evaluated the diagnostic performance of ASL in identifying pathological abnormalities in FTD (FTD) to determine whether ASL can provide similar diagnostic value as FDG-PET.
View Article and Find Full Text PDFCoronary artery disease (CAD) poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to hypercapnia in 34 CAD patients and 21 age-matched controls. Gray matter volume (GMV) images were acquired and used as a confounding variable to separate changes in structure from function.
View Article and Find Full Text PDFBackground And Purpose: Obstructive sleep apnea (OSA) subjects show brain injury in sites that control autonomic, cognitive, and mood functions that are deficient in the condition. The processes contributing to injury may include altered blood-brain barrier (BBB) actions. Our aim was to examine BBB function, based on diffusion-weighted pseudo-continuous arterial spin labeling (DW-pCASL) procedures, in OSA compared to controls.
View Article and Find Full Text PDFPurpose: To evaluate a potential approach for improved attenuation correction (AC) of PET in simultaneous PET and MRI brain imaging, a straightforward approach that adds bone information missing on Dixon AC was explored.
Methods: Bone information derived from individual T1-weighted MRI data using segmentation tools in SPM8, were added to the standard Dixon AC map. Percent relative difference between PET reconstructed with Dixon+bone and with Dixon AC maps were compared across brain regions of 13 oncology patients.
Motivations of arterial spin labeling (ASL) at ultrahigh magnetic fields include prolonged blood T1 and greater signal-to-noise ratio (SNR). However, increased B0 and B1 inhomogeneities and increased specific absorption ratio (SAR) challenge practical ASL implementations. In this study, Turbo-FLASH (Fast Low Angle Shot) based pulsed and pseudo-continuous ASL sequences were performed at 7T, by taking advantage of the relatively low SAR and short TE of Turbo-FLASH that minimizes susceptibility artifacts.
View Article and Find Full Text PDFPurpose: To determine the extent to which arterial spin labeling (ASL), a functional magnetic resonance imaging technique that directly measures cerebral blood flow (CBF), is able to measure the neural activation associated with prolonged experimental muscle pain.
Materials And Methods: Hypertonic saline (HS) (5% NaCl) was infused into the brachioradialis muscle of 19 healthy volunteers for 15 min. The imaging volume extended from the dorsal side of the pons to the primary somatosensory cortices, covering most of the cortical and subcortical regions associated with pain perception.
Changes in the exchange rate of water across the blood-brain barrier, denoted k(w), may indicate blood-brain barrier dysfunction before the leakage of large-molecule contrast agents is observable. A previously proposed approach for measuring k(w) is to use diffusion-weighted arterial spin labeling to measure the vascular and tissue fractions of labeled water, because the vascular-to-tissue ratio is related to k(w). However, the accuracy of diffusion-weighted arterial spin labeling is affected by arterial blood contributions and the arterial transit time (τ(a)).
View Article and Find Full Text PDFPurpose: To provide the first comparison of absolute renal perfusion obtained by arterial spin labeling (ASL) and separable compartment modeling of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Moreover, we provide the first application of the dual bolus approach to quantitative DCE-MRI perfusion measurements in the kidney.
Materials And Methods: Consecutive ASL and DCE-MRI acquisitions were performed on six rabbits on a 1.
Top Magn Reson Imaging
April 2010
Arterial spin labeling (ASL) perfusion magnetic resonance imaging has gained wide acceptance for its value in clinical and neuroscience applications during recent years. Its capability for noninvasive and absolute perfusion quantification is a key characteristic that makes ASL attractive for many clinical applications. In the present review, we discuss the main parameters or factors that affect the reliability and accuracy of ASL perfusion measurements.
View Article and Find Full Text PDFThe swine brain is emerging as a potentially valuable translational animal model of neurodevelopment and offers the ability to assess the impact of experimentally induced neurological disorders. The goal for this study was to characterize swine brain development using noninvasive MRI measures of microstructural and cerebrovascular changes. Thirteen pigs at various postnatal ages (2.
View Article and Find Full Text PDFPurpose: To demonstrate the feasibility and repeatability of cerebrovascular reactivity (CVR) imaging using a controlled CO(2) challenge in mechanically ventilated juvenile pigs.
Materials And Methods: Precise end-tidal partial pressure CO(2) (PETCO(2)) control was achieved via a computer-controlled model-driven prospective end-tidal targeting (MPET) system integrated with mechanical ventilation using a custom-built secondary breathing circuit. Test-retest blood-oxygen level dependent (BOLD) CVR images were collected in nine juvenile pigs by quantifying the BOLD response to iso-oxic square-wave PETCO(2) changes.
Knowledge regarding neural pain processing is primarily the result of studies involving models of brief cutaneous pain; however, clinical pain generally originates in deep tissue and is prolonged. This study measured the dynamic neural activation associated with a muscular pain model incorporating both acute and tonic states. Hypertonic saline (5% NaCl) was infused into the brachioradialis muscle of eleven healthy volunteers for 15min after an initial bolus of 0.
View Article and Find Full Text PDFAbnormalities in cerebral blood flow (CBF) are believed to play a significant role in the development of major neonatal neuropathologies. One approach that would appear ideal for measuring CBF in this fragile age group is arterial spin labeling (ASL) since ASL techniques are noninvasive and quantitative. The purpose of this study was to assess the accuracy of a pulsed ASL method implemented on a 3-T scanner dedicated to neonatal imaging.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
April 2007
Quantification of water permeability can improve the accuracy of perfusion measurements obtained with arterial spin labeling (ASL) methods, and may provide clinically relevant information regarding the functional status of the microvasculature. The amount of labeled water in the vascular and tissue compartments in an ASL experiment can be estimated based on their distinct diffusion characteristics, and in turn, water permeability determined from the relative vascular and tissue contributions. In the present study, a hybrid magnetic resonance imaging technique was introduced by marrying a continuous ASL method with a twice-refocused spin-echo diffusion sequence.
View Article and Find Full Text PDFPurpose: To investigate using an arterial spin tagging (AST) approach the effect of indomethacin on the cerebral blood flow (CBF) response to hypercapnia.
Materials And Methods: Subjects inhaled a gas mixture containing 6% CO(2) for two 5-minute periods, which were separated by a 10-minute interval, in which subjects inhaled room air. In six subjects, indomethacin (i.
A noninvasive technique for measuring the permeability of the blood-brain barrier (BBB) to water could help to evaluate changes in the functional integrity of the BBB that occur in different pathologies, such as multiple sclerosis or growth of brain tumor. Recently, Schwarzbauer et al. (Magn Reson Med 1997;37:769-777) proposed an MR method to measure this permeability based on the T(1) reductions induced by injecting various doses of paramagnetic contrast agent.
View Article and Find Full Text PDF