Publications by authors named "Keith S Abayasiriwardana"

Malignant mesothelioma is an aggressive fibrous tumor, predominantly of the pleura, with a very poor prognosis. Cell-matrix interactions are recognized important determinants of tumor growth and invasiveness but the role of the extracellular matrix in mesothelioma is unknown. Mesothelioma cells synthesize collagen as well as transforming growth factor-beta (TGF-β), a key regulator of collagen production.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) holds promise for the treatment of tumors; however, many tumors are resistant to TRAIL alone. We previously showed that resistant malignant mesothelioma cells are sensitized to TRAIL-induced apoptosis by diverse toxic insults including chemotherapy, irradiation, or protein translation inhibitors such as cycloheximide. In seeking nontoxic sensitizers for TRAIL, we tested the protein translation inhibitor anisomycin at subtoxic concentrations 10- to 100-fold below those reported to inhibit protein translation.

View Article and Find Full Text PDF

Heat stress may enhance the effect of apoptosis-inducing agents in resistant tumor cells. One such agent is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which has attracted intense interest for its ability to induce apoptosis in tumors without affecting nonmalignant cells. We therefore tested whether heat stress potentiates TRAIL-induced apoptosis in mesothelioma cells, its cell type being resistant to TRAIL alone.

View Article and Find Full Text PDF

Like many tumors, malignant mesothelioma exhibits significant chemoresistance and resistance to apoptosis in vivo that is not seen in current in vitro models. To study the mechanisms of this multicellular resistance, biologically relevant in vitro models are necessary. Therefore, we characterized and tested human mesothelioma tissue grown in vitro as tumor fragment spheroids.

View Article and Find Full Text PDF

The death ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), has shown great promise for inducing apoptosis selectively in tumors. Although many tumor cells are resistant to TRAIL-induced apoptosis alone, they can often be sensitized by co-treatment with DNA-damaging agents such as etoposide. However, the molecular mechanism underlying this therapeutically important synergy is unknown.

View Article and Find Full Text PDF