Purpose: Primary ciliary dyskinesia (PCD) is a rare disorder of the mucociliary clearance leading to recurrent upper and lower respiratory tract infections. PCD is difficult to clinically distinguish from other entities leading to recurrent oto-sino-pulmonary infections, including primary immunodeficiency (PID). Nasal nitric oxide (nNO) is a sensitive and specific diagnostic test for PCD, but it has not been thoroughly examined in PID.
View Article and Find Full Text PDFRationale: In primary ciliary dyskinesia, factors leading to disease heterogeneity are poorly understood.
Objectives: To describe early lung disease progression in primary ciliary dyskinesia and identify associations between ultrastructural defects and genotypes with clinical phenotype.
Methods: This was a prospective, longitudinal (5 yr), multicenter, observational study.
Regulation of poly(A) tail length during mRNA 3'-end formation requires a specific poly(A)-binding protein in addition to the cleavage/polyadenylation machinery. The mechanism that controls polyadenylation in mammals is well understood and involves the nuclear poly(A)-binding protein PABPN1. In contrast, poly(A) tail length regulation is poorly understood in yeast.
View Article and Find Full Text PDFRecent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain.
View Article and Find Full Text PDF