Yb-doped amorphous carbon thin films were grown on Si substrates at low temperatures (<200 °C) by a simple one-step RF-PEMOCVD system as a potential photonic material for direct integration with Si CMOS back end-of-line processing. Room temperature photoluminescence around 1 µm was observed via direct incorporation of optically active Yb ions from the selected Yb(fod)₃ metal-organic compound. The partially fluorinated Yb(fod)₃ compound assists the suppression of photoluminescence quenching by substitution of C-H with C-F bonds.
View Article and Find Full Text PDFThe integration of photonic materials into CMOS processing involves the use of new materials. A simple one-step metal-organic radio frequency plasma enhanced chemical vapor deposition system (RF-PEMOCVD) was deployed to grow erbium-doped amorphous carbon thin films (a-C:(Er)) on Si substrates at low temperatures (<200 °C). A partially fluorinated metal-organic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5- octanedionate) Erbium(+III) or abbreviated Er(fod)₃, was incorporated into a-C based host.
View Article and Find Full Text PDF