Background: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored.
View Article and Find Full Text PDFThe urea channel of (UreI) is an ideal drug target for preventing gastric cancer but incomplete understanding of its gating mechanism has hampered development of inhibitors for the eradication of . Here, we present the cryo-EM structures of UreI in closed and open conformations, both at a resolution of 2.7 Å.
View Article and Find Full Text PDFThe gastric proton pump H,K-ATPase acidifies the gastric lumen, and thus its inhibitors, including the imidazo[1,2-a]pyridine class of K-competitive acid blockers (P-CABs), have potential application as acid-suppressing drugs. We determined the electron crystallographic structure of H,K-ATPase at 6.5 Å resolution in the E2P state with bound BYK99, a potent P-CAB with a restricted ring structure.
View Article and Find Full Text PDFHalf the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease.
View Article and Find Full Text PDFThe gastric H(+),K(+)-ATPase is responsible for gastric acid secretion. This ATPase is composed of two subunits, the catalytic α subunit and the structural β subunit. The α subunit with molecular mass of about 100 kDa has 10 transmembrane domains and is strongly associated with the β subunit with a single transmembrane segment and a peptide mass of 35 kDa.
View Article and Find Full Text PDFInhibition of the gastric H,K-ATPase by the potassium-competitive acid blocker (P-CAB) 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine (TAK-438), is strictly K(+)-competitive with a K(i) of 10 nM at pH 7. In contrast to previous P-CABs, this structure has a point positive charge (pK(a) 9.06) allowing for greater accumulation in parietal cells compared with previous P-CABs [e.
View Article and Find Full Text PDFThe antimycotic drug clotrimazole inhibits the function of the gastric H,K-ATPase in a manner similar to that observed for the Na,K-ATPase. Because of the high hydrophobicity of the compound, the interaction between clotrimazole and the ion pump occurs at the membrane domain in the apolar core of the membrane. The enzymatic activity was inhibited with a half-saturating concentration of 5.
View Article and Find Full Text PDFBulky hydrophilic N-glycans stabilize the proper tertiary structure of glycoproteins. In addition, N-glycans comprise the binding sites for the endoplasmic reticulum (ER)-resident lectins that assist correct folding of newly synthesized glycoproteins. To reveal the role of N-glycans in maturation of the Na,K-ATPase beta(2) subunit in the ER, the effects of preventing or modifying the beta(2) subunit N-glycosylation on trafficking of the subunit and its binding to the ER lectin chaperone, calnexin, were studied in MDCK cells.
View Article and Find Full Text PDFWe used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain.
View Article and Find Full Text PDFGastric H,K-ATPase is an electroneutral transmembrane pump that moves protons from the cytoplasm of the parietal cell into the gastric lumen in exchange for potassium ions. The mechanism of transport against the established electrochemical gradients includes intermediate conformations in which the transferred ions are trapped (occluded) within the membrane domain of the pump. The pump cycle involves switching between the E1 and E2P states.
View Article and Find Full Text PDFThe gastric H,K-ATPase, a member of the P(2)-type ATPase family, is the integral membrane protein responsible for gastric acid secretion. It is an alpha,beta-heterodimeric enzyme that exchanges cytoplasmic hydronium with extracellular potassium. The catalytic alpha subunit has ten transmembrane segments with a cluster of intramembranal carboxylic amino acids located in the middle of the transmembrane segments TM4, TM5,TM6, and TM8.
View Article and Find Full Text PDFNon-human primates (NHPs) are considered to be among the most relevant animal models for pre-clinical testing of human therapies, on the basis of their close evolutionary relatedness to humans in terms of organ cell biology and physiology. In this study, we sought to investigate whether NHP models accurately reflect the effectiveness of recombinant adeno-associated virus (rAAV)-mediated gene delivery to the airway in humans. In order to do this, we utilized an identical model system of differentiated airway epithelia from Indian Rhesus monkeys and from humans, cultured at an air-liquid interface (ALI).
View Article and Find Full Text PDFThe recent progress in therapy if acid disease has relied heavily on the performance of drugs targeted against the H,K ATPase of the stomach and the H2 receptor antagonists. It has become apparent in the last decade that the proton pump is the target that has the likelihood of being the most sustainable area of therapeutic application in the regulation of acid suppression. The process of activation of acid secretion requires a change in location of the ATPase from cytoplasmic tubules into the microvilli of the secretory canaliculus of the parietal cell.
View Article and Find Full Text PDFNew models of the gastric H,K ATPase in the E1K and E2P states are presented as the first structures of a K+ counter-transport P2-type ATPase exhibiting ion entry and exit paths. Homology modeling was first used to generate a starting conformation from the srCa ATPase E2P form (PDB code 1wpg) that contains bound MgADP. Energy minimization of the model showed a conserved adenosine site but nonconserved polyphosphate contacts compared to the srCa ATPase.
View Article and Find Full Text PDFBackground: Cystic fibrosis is an autosomal recessive disease affecting approximately 1 in 2500 live births. Introducing the cDNA that codes for normal cystic fibrosis transmembrane conductance regulator (CFTR) to the small airways of the lung could result in restoring the CFTR function. A number of vectors for lung gene therapy have been tried and adeno-associated virus (AAV) vectors offer promise.
View Article and Find Full Text PDFThe gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface.
View Article and Find Full Text PDFPharmacologic- and gene-based therapies have historically been developed as two independent therapeutic platforms for cystic fibrosis (CF) lung disease. Inhibition of the dysregulated epithelial Na channel (ENaC) is one pharmacologic approach to enhance airway clearance in CF. We investigated pharmacologic approaches to enhance CFTR gene delivery with recombinant adeno-associated virus (rAAV) and identified compounds that significantly improved viral transduction while simultaneously inhibiting ENaC activity through an unrelated mechanism.
View Article and Find Full Text PDFTripeptidyl aldehyde proteasome inhibitors have been shown to effectively increase viral capsid ubiquitination and transduction of recombinant adeno-associated virus type 2 (rAAV-2) and rAAV-5 serotypes. In the present study we have characterized a second class of proteasome-modulating agents (anthracycline derivatives) for their ability to induce rAAV transduction. The anthracycline derivatives doxorubicin and aclarubicin were chosen for analysis because they have been shown to interact with the proteasome through a mechanism distinct from that of tripeptidyl aldehydes.
View Article and Find Full Text PDFThe gastric H,K-ATPase and the Na,K-ATPase both are stimulated by luminal K(+), but differ in sensitivity to K(+)-competitive inhibitors (ouabain and SCH28080), which implies a difference in structure near the luminal ion pathways in these two pumps. Knowledge of the amino acids in the H,K-ATPase that affect the mode of inhibition by SCH28080 and inhibitor affinity should provide insight into the regions of the membrane domain influencing the inhibitor selectivity and the luminal route to the ion transport site. Mutational scans in M4, 5, 6, and 8 have shown that amino acid residues affecting ion affinity (E343, K791, E795, E820, D824, E936) with either no or a lesser effect on the inhibitor affinity are located in the middle of the membrane domain.
View Article and Find Full Text PDFWe have used homology molecular modeling based on the srCaATPase E(2) conformation, pdb1kju, to predict side chains involved in docking the K(+) competitive inhibitor, SCH28080, to the H,K-ATPase. A model for SCH28080 binding between residues L809 and A335 in the same space utilized by omeprazole is proposed. We also describe modeling MgATP binding to the E(1) structure of the srATPase, pdb1eul, as a paradigm for the Na,K- and H,K-ATPases.
View Article and Find Full Text PDFBest Pract Res Clin Gastroenterol
December 2002
The past 25 years have seen an amazing improvement in the treatment and understanding of acid-related disorders. In particular, the introduction of selective histamine receptor antagonists and proton pump inhibitors has made the medical control of acid secretion an effective means of therapy. The demonstration that infection with Helicobacter pylori is responsible for most cases of peptic ulcer disease resulted in another major improvement in therapy in these areas as a result of the eradication of the organism.
View Article and Find Full Text PDFThis work utilizes Fe(2+)-catalyzed cleavages and molecular modeling to obtain insight into conformations of cytoplasmic domains and ATP-Mg(2+) binding sites of Na(+),K(+)-ATPase. In E(1) conformations the ATP-Fe(2+) complex mediates specific cleavages at 712VNDS (P domain) and near 440VAGDA (N domain). In E(2)(K), ATP-Fe(2+) mediates cleavages near 212TGES (A domain), near 440VAGDA, and between residues 460-490 (N domain).
View Article and Find Full Text PDF