Biotinylated antibodies/antigens are currently used in many immunoassay formats in clinical settings for diversified analytes and biomarkers to offer high detection selectivity and sensitivity. Biotin cannot be synthesized by mammals and must be taken as an essential supplement. Normal intake of biotin from various foods and milk causes no effect on the streptavidin/biotin-based immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2013
The dynamic batch adsorption of methylene blue (MB), a widely used and toxic dye, onto nanocrystalline cellulose (NCC) and crushed powder of carbon monolith (CM) was investigated using the pseudo-first- and -second-order kinetics. CM outperformed NCC with a maximum capacity of 127 mg/g compared to 101 mg/g for NCC. The Langmuir isotherm model was applicable for describing the binding data for MB on CM and NCC, indicating the homogeneous surface of these two materials.
View Article and Find Full Text PDFTitanium dioxide (TiO2) nanoparticles (NPs) with different sizes and structures were probed for plausible cytotoxicity using electric cell-substrate impedance sensing (ECIS), a non-invasive and on-line procedure for continuous monitoring of cytotoxicity. For insect cells (Spodoptera frugiperda Sf9), the ECIS50 values, i.e.
View Article and Find Full Text PDFThree water-dispersible graphene derivatives, graphene oxide (GO), sulfonated graphene oxide (SGO), and sulfonated graphene (SG), were prepared and probed for their plausible cytotoxicity by non-invasive electric cell-substrate impedance sensing (ECIS). With Spodoptera frugiperda Sf9 insect cells adhered on gold microelectrodes as an active interface, it is feasible to monitor changes in impedance upon exposure to different graphene derivatives. Sf9 insect cells were then exposed to different concentrations of graphene derivatives and their spreading and viability were monitored and quantified by ECIS in real-time.
View Article and Find Full Text PDFBackground: Acute trauma coagulopathy in seriously injured casualties may be initiated by tissue hypoperfusion. A targeted (or novel hybrid [NH]) resuscitation strategy was developed to overcome poor tissue oxygen delivery associated with prolonged hypotension.
Methods: Under the Animals (Scientific Procedures) Act 1986, terminally anesthetized large white pigs were divided into four groups (n = 6).
Nanocrystalline cellulose (NCC), a rod-shaped nanoscale material with exceptional strength and physicochemical properties, can be prepared from inexpensive renewable biomass. Besides its potential use as a reinforcing agent for industrial biocomposites, pristine NCC exhibits low toxicity and poses no serious environmental concerns, providing impetus for its use in bioapplications. Here, we review recent developments in the use of modified NCC for emerging bioapplications, specifically enzyme immobilization, antimicrobial and medical materials, green catalysis, biosensing and controlled drug delivery.
View Article and Find Full Text PDFNCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS(50)), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines.
View Article and Find Full Text PDFMethods Mol Biol
September 2011
Bioconjugation of carbon nanotubes (CNTs) with biomolecules promises exciting applications such as biosensing, nanobiocomposite formulation, design of drug vector systems, and probing protein interactions. Pristine CNTs, however, are virtually water-insoluble and difficult to evenly disperse in a liquid matrix. Therefore, it is necessary to attach molecules or functional groups to their sidewalls to enable bioconjugation.
View Article and Find Full Text PDFProbing of cellular uptake and cytotoxicity was conducted for two fluorescent cellulose nanocrystals (CNCs): CNC-fluorescein isothiocyanate (FITC) and newly synthesized CNC-rhodamine B isothiocyanate (RBITC). The positively charged CNC-RBITC was uptaken by human embryonic kidney 293 (HEK 293) and Spodoptera frugiperda (Sf9) cells without affecting the cell membrane integrity. The cell viability assay and cell-based impedance spectroscopy revealed no noticeably cytotoxic effect of the CNC-RBITC conjugate.
View Article and Find Full Text PDFIn an effort to develop a noninvasive method for assessment of cyanobacterial toxins in drinking water, plausible cytotoxicity/inhibition of microcystin-LR and cylindrospermopsin was evaluated by cell-substrate impedance sensing (ECIS) using three different cell lines. Sf9 insect cells were attached to concanavalin A coated gold electrodes, whereas Chinese hamster ovary (CHO) and human embryo kidney (HEK) cells were attached to a fibronectin or laminin coated gold surface. Cytotoxic or inhibitory effects were dependent upon the cell line and the extracellular matrix (ECM) coating.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2009
A novel nanocomposite consisting of cellulose nanocrystals (CNCs) functionalized with gold nanoparticles (AuNPs) serving as an excellent support for enzyme immobilization with phenomenally high loading is presented in this work. As testing models, cyclodextrin glycosyl transferase (CGTase) and alcohol oxidase were conjugated on an activated CNC/AuNP matrix. This catalytic platform exhibits significant biocatalytic activity with excellent enzyme stability and without apparent loss of the original activity.
View Article and Find Full Text PDFIn recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes.
View Article and Find Full Text PDFA noninvasive technique based on electric cell-substrate impedance sensing (ECIS) was demonstrated for on-line probing inhibitory effects of five destruxins on Spodoptera frugiperda Sf9 insect cells. Such chemically structurally similar cyclic hexadepsipeptides, were isolated and purified from the fungus Metarhizium anisopliae. Based on a response function, the inhibitory effect of the destruxins was established from determining the half-inhibition concentration (ECIS50), i.
View Article and Find Full Text PDFA CD-modified capillary electrophoretic method has been developed for achiral and chiral analysis of seven bioactive compounds isolated from the fruiting body of Antrodia camphorata. Such important target analytes exhibit similar chemical structures and are known for their diverse properties including antioxidant and anticancer effects. The analytes were separated in 25 min using a pH 9.
View Article and Find Full Text PDFA continuous online technique based on electric cell-substrate impedance sensing (ECIS) was used for probing inhibitory effects on Spodoptera frugiperda Sf9 insect cells exposed to structurally similar compounds isolated and purified from the fruiting bodies of the fungus Antrodia camphorata. Such chemicals consisted of three ergostane-related steroids and five lanosta-related triterpenes, which are known for their diverse properties and use in the formulation of nutraceuticals and functional foods. The half-inhibition concentration (ECIS(50)), the level at which 50% inhibition of the resistance response was obtained, was determined from the response function to establish inhibitory effects of the different isolates.
View Article and Find Full Text PDFo-Nitrophenol, released from o-nitrophenyl-beta-D-galactopyranose as catalyzed by beta-galactosidase, a tetramer of Escherichia coli, has been exploited for the detection of E. coli contamination in foodstuffs. This reaction was detected using a boron doped diamond electrode poised at +0.
View Article and Find Full Text PDFBiosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities.
View Article and Find Full Text PDFRapid detection of microorganisms is highly desirable. A procedure has been developed based on interactions between gold nanoparticles and proteins of microorganisms (Escherichia coli, Rhodococcus rhodochrous, and Candida sp.) followed by scanning electron microscopy (SEM).
View Article and Find Full Text PDFA continuous online technique based on electric cell-substrate impedance sensing (ECIS) was demonstrated for measuring the concentration and time response function of fibroblastic V79 cells exposed to nanomaterials such as quantum dots (QDs) and fluorescent gold nanoparticles. The half-inhibition concentration, (ECIS50), the required concentration to attain 50% inhibition of the cytotoxic response, was estimated from the response function to ascertain cytotoxicity during the course of measurement. The ECIS50 values agreed well with the results obtained using the standard neutral red assay.
View Article and Find Full Text PDFPlatinum nanoparticles were electrodeposited by a multi-potential step technique onto a multi-walled carbon nanotube (MWCNT) film pre-casted on a glassy carbon (GC) or boron-doped diamond (BDD) electrode. The MWCNT network consisted of Pt nanoparticles with an average diameter of 120 nm after an optimization of 36 deposition cycles. The resulting electrochemical sensors were capable of detecting hydrogen peroxide as low as 25 nM.
View Article and Find Full Text PDFA biosensor for arsenite has been developed using molybdenum-containing arsenite oxidase, prepared from the chemolithoautotroph NT-26 that oxidizes arsenite to arsenate. The enzyme was galvanostatically deposited for 10 min at 10 microA onto the active surface of a multiwalled carbon nanotube modified glassy carbon electrode. The resulting biosensor enabled direct electron transfer, i.
View Article and Find Full Text PDFBiosensors can be considered as a most plausible and exciting application area for nanobiotechnology. The recent bloom of nanofabrication technology and biofunctionalization methods of carbon nanotubes (CNTs) has stimulated significant research interest to develop CNT-based biosensors for monitoring biorecognition events and biocatalytic processes. The unique properties of CNTs, rolled-up sheets of carbon atoms with a diameter less than 1 nm, offer excellent prospects for interfacing biological recognition events with electronic signal transduction.
View Article and Find Full Text PDFMetal nanoparticles (Pt, Au, or Cu) together with multiwalled and single-walled carbon nanotubes (MWCNT and SWCNT) solubilized in Nafion have been used to form nanocomposites for electrochemical detection of trinitrotoluene (TNT) and several other nitroaromatics. Electrochemical and surface characterization by cyclic voltammetry, AFM, TEM, SEM, and Raman spectroscopy confirmed the presence of metal nanoparticles on CNTs. Among various combinations tested, the most synergistic signal effect was observed for the nanocomposite modified glassy carbon electrode (GC) containing Cu nanoparticles and SWCNT solubilized in Nafion.
View Article and Find Full Text PDF