Metastatic breast cancer is a devastating disease with very limited therapeutic options, calling for new therapeutic strategies. Oncogenic miRNAs have been shown to be associated with the metastatic potential of breast cancer and are implicated in tumor cell migration, invasion, and viability. However, it can be difficult to deliver an inhibitory RNA molecule to the tissue of interest.
View Article and Find Full Text PDFThe essential microelement zinc is absorbed in the small intestine mainly by the zinc transporter ZIP4, a representative member of the Zrt/Irt-like protein (ZIP) family. ZIP4 is reportedly upregulated in many cancers, making it a promising oncology drug target. To date, there have been no reports on the turnover number of ZIP4, which is a crucial missing piece of information needed to better understand the transport mechanism.
View Article and Find Full Text PDFPolymeric biomedical implants are an important clinical tool, but degradation remains difficult to determine post-implantation. Computed tomography (CT) could be a powerful tool for device monitoring, but polymers require incorporation of radiopaque contrast agents to be distinguishable from tissue. In addition, immune response to radiopaque devices must be characterized as it modulates device function.
View Article and Find Full Text PDFEngineering of transporters to alter substrate specificity as desired holds great potential for applications, including metabolic engineering. However, the lack of knowledge on molecular mechanisms of substrate specificity hinders designing effective strategies for transporter engineering. Here, we applied an integrated approach to rationally alter the substrate preference of ZIP8, a Zrt-/Irt-like protein (ZIP) metal transporter with multiple natural substrates, and uncovered the determinants of substrate specificity.
View Article and Find Full Text PDFCurr Opin Chem Biol
August 2022
Faster, more sensitive, and higher resolution quantitative instrumentation are aiding a deeper understanding of how inorganic chemistry regulates key biological processes. Researchers can now image and quantify metals with subcellular resolution, leading to a vast array of new discoveries in organismal development, pathology, and disease. Metals have recently been implicated in several diseases such as Parkinson's, Alzheimers, ischemic stroke, and colorectal cancer that would not be possible without these advancements.
View Article and Find Full Text PDFAntibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date. In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein.
View Article and Find Full Text PDFAntibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date . In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein.
View Article and Find Full Text PDFOur lab has developed a new series of self-immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β-galactosidase (β-gal). We investigated two molecular architectures to create agents that detect β-gal activity by modulating the coordination of water to Gd . The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions.
View Article and Find Full Text PDFCapabilities in real-time monitoring of internal physiological processes could inform pharmacological drug-delivery schedules, surgical intervention procedures and the management of recovery and rehabilitation. Current methods rely on external imaging techniques or implantable sensors, without the ability to provide continuous information over clinically relevant timescales, and/or with requirements in surgical procedures with associated costs and risks. Here, we describe injectable classes of photonic devices, made entirely of materials that naturally resorb and undergo clearance from the body after a controlled operational lifetime, for the spectroscopic characterization of targeted tissues and biofluids.
View Article and Find Full Text PDFWe describe a new, and vastly superior approach for labeling spherical nucleic acid conjugates (SNAs) with diagnostic probes. SNAs have been shown to provide the unique ability to traverse the cell membrane and deliver surface conjugated DNA into cells while preserving the DNA from nuclease degradation. Our previous work on preparing diagnostically labeled SNAs was labor intensive, relatively low yielding, and costly.
View Article and Find Full Text PDFVisualizing disease heterogeneity remains a challenging task since most imaging agents are targeted to a single receptor. We describe the development of an MR platform able to report on multiple molecular events. Enzyme activation and enhanced cellular uptake of this modular probe make it suitable for subsequent targeted-reporter imaging applications.
View Article and Find Full Text PDFPost-synthetic modification of the zirconium-based metal-organic framework (MOF) NU-1000 by atomic layer deposition (ALD), using tetramethoxysilane (Si(OMe) ) as a precursor, led to the incorporation and stabilization of silicon oxide clusters composed of only a few silicon atoms in the framework's pores. The resulting SiO functionalized material (Si-NU-1000) was found to be catalytically active despite the inactivity of related bulk silicon dioxide (SiO ), thus demonstrating the positive effects of having nanosized clusters of SiO . Moreover, Si-NU-1000 showed activity greater than that found for aluminum oxide based catalysts-oxides known for their high acidity-such as an aluminum oxide functionalized MOF (Al-NU-1000) and bulk γ-Al O .
View Article and Find Full Text PDFA widely prevalent single nucleotide polymorphism, rs13266634 in the SLC30A8 gene encoding the zinc transporter ZnT8, is associated with an increased risk for T2DM. ZnT8 is mostly expressed in pancreatic insulin-producing islets of Langerhans. The effect of this variant on the divalent metal profile in human islets is unknown.
View Article and Find Full Text PDFThe ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies.
View Article and Find Full Text PDFIn vivo cell tracking is vital for understanding migrating cell populations, particularly cancer and immune cells. Magnetic resonance (MR) imaging for long-term tracking of transplanted cells in live organisms requires cells to effectively internalize Gd(III) contrast agents (CAs). Clinical Gd(III)-based CAs require high dosing concentrations and extended incubation times for cellular internalization.
View Article and Find Full Text PDFPancreatic adenocarcinoma has a 5 year survival of approximately 3% and median survival of 6 months and is among the most dismal of prognoses in all of medicine. This poor prognosis is largely due to delayed diagnosis where patients remain asymptomatic until advanced disease is present. Therefore, techniques to allow early detection of pancreatic adenocarcinoma are desperately needed.
View Article and Find Full Text PDFCalcium [Ca(II)] is a fundamental transducer of electrical activity in the central nervous system (CNS). Influx of Ca(II) into the cytosol is responsible for action potential initiation and propagation, and initiates interneuronal communication via release of neurotransmitters and activation of gene expression. Despite the importance of Ca(II) in physiology, it remains a challenge to visualize Ca(II) flux in the central nervous system (CNS) in vivo.
View Article and Find Full Text PDFThe unambiguous imaging of transplanted cells remains a major challenge to understand their biological function and therapeutic efficacy. In vivo imaging of implanted cells is reliant on tagging these to differentiate them from host tissue, such as the brain. We here characterize a gold nanoparticle conjugate that is functionalized with modified deoxythymidine oligonucleotides bearing Gd(III) chelates and a red fluorescent Cy3 moiety to visualize in vivo transplanted human neural stem cells.
View Article and Find Full Text PDFJ Biol Inorg Chem
September 2015
Long-term cell tracking using MR imaging necessitates the development of contrast agents that both label and are retained by cells. One promising strategy for long-term cell labeling is the development of lipophilic Gd(III)-based contrast agents that anchor into the cell membrane. We have previously reported the efficacy of monomeric and multimeric lipophilic agents and showed that the monomeric agents have improved labeling and contrast enhancement of cell populations.
View Article and Find Full Text PDFMultiple imaging modalities are often required for in vivo imaging applications that require both high probe sensitivity and excellent spatial and temporal resolution. In particular, MR and optical imaging are an attractive combination that can be used to determine both molecular and anatomical information. Herein, we describe the synthesis and in vivo testing of two multimeric NIR-MR contrast agents that contain three Gd(III) chelates and an IR-783 dye moiety.
View Article and Find Full Text PDF