For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e.
View Article and Find Full Text PDFBackground: Migrating birds experience weather conditions that change with time, which affect their decision to stop or resume migration. Soaring migrants are especially sensitive to changing weather conditions because they rely on the availability of environmental updrafts to subsidize flight. The timescale that local weather conditions change over is on the order of hours, while stopovers are studied at the daily scale, creating a temporal mismatch.
View Article and Find Full Text PDFBackground: The extent to which seasonal changes in food availability affect small-scale movements in free-ranging populations of birds of prey is relatively little studied. Here we describe a seasonal "micro-migration" of a farm-island population of striated caracaras () in the Falkland Islands in response to seasonal changes in the availability of seabird carcasses. We banded more than 450 individuals on Saunders Island, deployed archival and satellite GPS data loggers on 17 individuals, and monitored movements within and between two feeding areas on Saunders Island, a "marine-subsidized" site near seabird colonies and an anthropogenic "human-subsidized" farm site 16 km to the southeast.
View Article and Find Full Text PDFBackground: Tracking individual animals using satellite telemetry has improved our understanding of animal movements considerably. Nonetheless, thorough statistical treatment of Argos datasets is often jeopardized by their coarse temporal resolution. State-space modelling can circumvent some of the inherent limitations of Argos datasets, such as the limited temporal resolution of locations and the lack of information pertaining to the behavioural state of the tracked individuals at each location.
View Article and Find Full Text PDFThe ongoing global decline in vulture populations raises major conservation concerns, but little is known about the factors that mediate scavenger habitat use, in particular the importance of abundance of live prey versus prey mortality. We test this using data from the Serengeti-Mara ecosystem in East Africa. The two hypotheses that prey abundance or prey mortality are the main drivers of vulture habitat use provide alternative predictions.
View Article and Find Full Text PDFUnderstanding the movements of animals is pivotal for understanding their ecology and predicting their survival in the face of rapid global changes to climate, land use, and habitats, thus facilitating more effective habitat management. Migration by flying animals is an extreme form of movement that may be especially influenced by weather. With satellite telemetry studies, and the growing availability of information about the Earth's weather and land surface conditions, many data are collected that can advance our understanding about the mechanisms that shape migrations.
View Article and Find Full Text PDFMigratory bird needs must be met during four phases of the year: breeding season, fall migration, wintering, and spring migration; thus, management may be needed during all four phases. The bulk of research and management has focused on the breeding season, although several issues remain unsettled, including the spatial extent of habitat influences on fitness and the importance of habitat on the breeding grounds used after breeding. Although detailed investigations have shed light on the ecology and population dynamics of a few avian species, knowledge is sketchy for most species.
View Article and Find Full Text PDF