Publications by authors named "Keith Huynh"

Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R''P═NSiMe(3) [R' = R'' = Me (2a); R' = Me, R'' = Ph (2b); R' = R'' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R''O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)).

View Article and Find Full Text PDF

New aspects of the chemistry of the phosphoranimine Cl(3)P=NMes* (Mes* = 2,4,6-tri-tert-butylphenyl) (7) and the phosphinimine ClP=NMes* (2) have been explored. A cationic derivative of 7 was prepared from the reaction between this species and DMAP (DMAP = 4-dimethylaminopyridine) in the presence of the halide abstraction agent AgOTf (OTf = OSO(3)CF(3)) which yielded the donor-stabilized cation [DMAP-PCl(2)=NMes*](+) ([9](+)). When treated with tertiary phosphines (n)Bu(3)P or Ph(3)P, 7 was found to undergo a reductive dechlorination reaction to yield 2 and dichlorophosphoranes R(3)PCl(2) (R = (n)Bu (13a), Ph (13b)).

View Article and Find Full Text PDF

A series of phosphine-stabilized phosphoranimine cations [R(3)P x PR'(2)=NSiMe(3)](+), which can be regarded as derivatives of the proposed transient reactive intermediate [PR'(2)=NSiMe(3)](+) in the thermal condensation polymerization of phosphoranimines (R''O)PR'(2)=NSiMe(3) to form poly(alkyl/arylphosphazenes) [PR'(2)=N](n) at 180-200 degrees C, have been prepared. The bromide salts [R(3)P x PR'(2)=NSiMe(3)]Br [R' = Me ([6](+)), OCH(2)CF(3) ([8](+)); R(3)P = Me(3)P (a), Et(3)P (b), (n)Bu(3)P (c), dmpm (d, dmpm = dimethylphosphinomethane), dmpe (e, dmpe = dimethylphosphinoethane)] were prepared from the direct reactions between BrMe(2)P=NSiMe(3) (5) and Br(CF(3)CH(2)O)(2)P=NSiMe(3) (7) and the corresponding tertiary phosphines R(3)P or the diphosphines Me(2)P(CH(2))(n)PMe(2) (n = 1, 2). Cations of the type [6](+) and [8](+), with electron-donating and -withdrawing groups at the phosphoranimine phosphorus center, respectively, undergo facile phosphine ligand substitution with the strong N-donor 4-dimethylaminopyridine (DMAP) to yield the corresponding DMAP-stabilized salts [DMAP x PR(2)=NSiMe(3)]Br [R = Me ([9](+)), OCH(2)CF(3) ([10](+))].

View Article and Find Full Text PDF

Zirconocene is the key: A new synthetic method, which utilizes zirconocene-mediated coupling of alkynes, has been developed for the preparation of a new class of highly Lewis acidic boroles (see scheme). Such compounds hold potential for applications in catalysis and the field of electron-deficient organic materials.

View Article and Find Full Text PDF

The temperature required for ring-opening polymerisation of cyclo-N(3)P(3)Cl(6) can be dramatically lowered by employing trialkylsilylium carboranes [R(3)Si(CHB(11)X(11)] as catalysts.

View Article and Find Full Text PDF

The phosphoranimine Br(CF3CH2O)2P=NSiMe3 (12) reacts quantitatively with nitrogen bases pyridine, 4,4'-bipyridine, and quinuclidine (quin) to form the N-donor stabilized phosphoranimine cations [N-donor.P(OCH2CF3)2=NSiMe3] ([15]+) in the presence of the halide abstractor AgOTf. In contrast to quinuclidine, in the absence of a halide abstractor, the weak bases pyridine and 4,4'-bipyridine do not undergo reactions with 12 or with the phosphoranimine Cl3P=NSiMe3 (7).

View Article and Find Full Text PDF

A series of DMAP-stabilized (DMAP=4-dimethylaminopyridine) N-silylphosphoranimine cations [DMAPPR(2)==NSiMe(3)](+), bearing R=Cl ([8](+)), Me ([10 a](+)), Me/Ph ([10 b](+)), Ph ([10 c](+)), and OCH(2)CF(3) ([10 d](+)) substituents, have been synthesized from the reactions of the parent phosphoranimines Cl(3)P==NSiMe(3) (3) and XR(2)P==NSiMe(3) (X=Cl (9), Br (11); R=Me (9 a and 11 a), Me/Ph (9 b and 11 b), Ph (9 c and 11 c), and OCH(2)CF(3) (9 d and 11 d)) with DMAP and silver salts as halide abstractors. Reactions in the absence of silver salts yield the corresponding cations, with halide counterions. The stability of the salts is highly dependent on the phosphoranimine substituent and the nature of the counteranion, such that electron-withdrawing substituents and non-coordinating anions yield the most stable salts.

View Article and Find Full Text PDF

A series of phosphine donor-stabilized N-silylphosphoranimine salts [R'3P.PR2=NSiMe3]+Br- were prepared from the direct reaction between the phosphoranimines BrR2P=NSiMe3 (R = Me, OCH2CF3) and the tertiary phosphines nBu3P and Me3P. The 1JPP values of these salts exhibit an unusual dependence on the substituents at the phosphoranimine acceptor and appear to reflect an electronic push-pull mechanism.

View Article and Find Full Text PDF

The reaction of N-(trimethylsilyl)phosphoranimine Cl3P=NSiMe3 (1) with nBu3P or Ph3P yields the N-(dichlorophosphino)phosphoranimines nBu3P=NPCl2 (4a) or Ph3P=NPCl2 (4b), respectively. Detailed studies of this reaction indicate a mechanism that involves the reductive dechlorination of 1 by the tertiary phosphine to yield nBu3PCl2 (5a) or Ph3PCl2 (5b) with the apparent formation of the transient chlorophosphinimine ClP=NSiMe3 (6), followed by condensation of 5a or 5b with 1 to form 4a or 4b and Me3SiCl. Convincing evidence for the proposed mechanism was revealed by studies of the analogous reaction between the N-(triphenylsilyl)phosphoranimine Cl3P=NSiPh3 (8) with nBu3P and Ph3P.

View Article and Find Full Text PDF

A series of donor-stabilized N-silylphosphoranimine salts [DMAP.PCl2=NSiMe3]+X- (DMAP = 4-(dimethylamino)pyridine) were prepared by the reaction of Cl3P=NSiMe3 with DMAP in the presence of silver salts AgX (X = OSO2CF3, BF4, and SbF6). Repeating the reaction in the absence of AgX gave the chloride salt [DMAP.

View Article and Find Full Text PDF

To explore the potential of the coordination chemistry of Pd and Pt halides with phosphinoacetylene ligands for the generation of novel, highly metallated organometallic coordination polymers, investigations on model compounds [MX2(PPh2 C identical to CPh)2] that exhibit trans-configured Pd centers and cis-configured Pt centers have been performed. The molecular structure of the trans-Pd complexes 2 (M = Pd, X = Br) and 5 (M = Pd, X = I) appeared suitable for the generation of linear materials, whereas the cis-Pt complex 6 (M = Pt, X = I) suggested the prospective formation of ring systems. The presence of acetylene moieties allowed for further increase of metal concentration by cluster formation with [Co2(CO)8].

View Article and Find Full Text PDF