Rhizophagus irregularis is the model species for arbuscular mycorrhizal fungi (AMF) research and the most widely propagated species for commercial plant biostimulants. Using asymbiotic and symbiotic cultivation systems initiated from single spores, advanced microscopy, Sanger sequencing of the glomalin gene, and PacBio sequencing of the partial 45S rRNA gene, we show that four strains of R. irregularis produce spores of two distinct morphotypes, one corresponding to the morphotype described in the R.
View Article and Find Full Text PDFThe reemergence and spread of , the causal agent of bacterial leaf streak in cereal crops and wilt in turfgrass and forage species, is a concern to growers in the United States and Canada. The pathogen is seedborne and listed as an A2 quarantine organism by EPPO, making it a major constraint to international trade and exchange of germplasm. The pathovar concept of the group is confusing due to overlapping of plant host ranges and specificity.
View Article and Find Full Text PDFSuberin is a cell-wall-associated hetero-polymer deposited in specific plant tissues. The precise role of its composition and lamellae structure in protecting plants against abiotic stresses is unclear. In , we tested the biochemical and physiological responses to water deficiency and NaCl treatment in mutants that are differentially affected in suberin composition and lamellae structure.
View Article and Find Full Text PDFA taxonomic revision of the hitherto monotypic genus was conducted incorporating multi-gene sequence analyses, host preference data and morphological criteria. The sequenced loci included rDNA ITS, partial chitin synthase gene (1), as well as fragments of two unnamed orthologous genes (, ). The combined evidence led to a reassessment and a new neotypification of s.
View Article and Find Full Text PDFA Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern.
View Article and Find Full Text PDFStaphylococcus epidermidis is a bacterium frequently isolated from contaminated platelet concentrates (PCs), a blood product used to treat bleeding disorders in transfusion patients. PCs offer an accidental niche for colonization of S. epidermidis by forming biofilms and thus avoiding clearance by immune factors present in this milieu.
View Article and Find Full Text PDFBacteria associated with corn roots inoculated with soils collected from the Canadian woodlands were isolated and characterized. Genus-level identification based on 16S rRNA sequence analysis classified the 161 isolates in 19 genera. The majority (64%) of the isolates were affiliated with the genus .
View Article and Find Full Text PDFNADPH oxidase (NOX) is one of the sources of reactive oxygen species (ROS) that modulates the activity of proteins through modifications of their cysteine residues. In a previous study, we demonstrated the importance of NOX in both the development and pathogenicity of the phytopathogen Fusarium graminearum. In this article, comparative proteomics between the wild-type and a Nox mutant of F.
View Article and Find Full Text PDFThe Arabidopsis pollen grain is covered by a lipidic pollen coat representing select constituents released upon the programmed cell death of the anther secretory tapetum. These constituents originate primarily from two specialized tapetal organelles, elaioplasts and tapetosomes. Tapetosomes are distinctive Brassicaceae organelles derived from the endoplasmic reticulum that store triacylglycerols, flavonoids, alkanes, and proteins.
View Article and Find Full Text PDFAn alteration in the secondary metabolism of maize (Zea mays L.) genetically modified with the wheat oxalate oxidase (OxO) gene was observed using HPLC and fluorescence microscopy. Phenolic concentrations in the OxO lines were significantly increased, but DIMBOA synthesis was reduced due to a diversion in the shikimate pathway leading to phenolic and hydroxamic acids.
View Article and Find Full Text PDF