Zn-Zn porphyrin dimers have been incorporated into thin dye-sensitized solar cells (DSSCs) to boost their light harvesting efficiency. The photoexcited dimers show efficient and fast electron injection into TiO(2) indicating that both photoexcited chromophores contribute to current generation. The improved light harvesting ability coupled to enhanced DSSC performance demonstrates the potential of 3-D light harvesting arrays as next generation light harvesters for artificial solar energy conversion systems.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2009
Zinc meso-tetraphenylporphyrin (ZnTPP) was modified in such a way to allow the effect of an asymmetric structural distortion on its optical properties to be investigated. This involved the fusion of a phenyl group to an adjacent pyrrole ring via a carbonyl bridge. With the aid of Density Functional Theory (DFT) and time-dependent DFT (TD-DFT) calculations it was found that the asymmetric distortion away from planarity induced by the carbonyl fusion resulted in a loss of degeneracy in the two lowest unoccupied molecular orbitals (LUMOs).
View Article and Find Full Text PDFFilm coating thickness and terahertz electric field peak strength (TEFPS) were determined using terahertz pulsed imaging (TPI) and employed for the analysis of sustained-release coated pellets (theophylline layered sugar cores coated with Kollicoat SR:Kollicoat IR polymer blends). The effects of coating thickness, drug layer uniformity and optional curing were investigated using eight batches of pellets. Ten pellets from each batch were imaged with TPI to analyse the coating morphology (depicted in TEFPS) and thickness prior to release measurements.
View Article and Find Full Text PDFObjectives: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability.
Key Findings: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most recently, terahertz pulsed spectroscopy have become popular for solid-state analysis since they are fast and non-destructive and allow solid-state changes to be probed at the molecular level.
In this study, in situ and mapping Raman spectroscopic measurements were used to investigate the physical structure of solid lipid extrudates and relate the structure to dissolution behaviour. Theophylline anhydrate was extruded with tripalmitin, with and without the water-soluble polymer, polyethylene glycol 10000. Raman mapping of the extrudate cores revealed that drug particles of diverse size were dispersed in a continuous lipid phase with or without polyethylene glycol.
View Article and Find Full Text PDFDuring the process development of coated tablets, knowledge on the formation and the location of film coating 'weak spots' is a key factor to the success of the process and the resulting product batch. It is understood that the performance of the product batch may be greatly limited, and often compromised, by weak spots on the tablet film coat. This study uses circular, biconvex tablets to investigate the ability of terahertz pulsed imaging (TPI) to identify the affected areas on the tablet film coat that are critical for dissolution performance.
View Article and Find Full Text PDFThe electronic and molecular structures of a family of oligothienylenevinylenes for organic solar cells are studied by means of UV/Vis, fluorescence and Raman spectroscopy, aided by quantum chemical calculations. By using different anchoring groups, the alteration of the electronic properties upon inserting electron-withdrawing groups into different positions on the oligothienylenevinylene backbone is determined. In addition, a thorough study of the photophysical properties is carried out to understand their potential use in optoelectronic devices.
View Article and Find Full Text PDFThe purpose of this study was to determine whether the muscle vibration applied to the quadriceps has potential for augmenting muscle activity during gait in spinal cord injured (SCI) individuals. The effects of muscle vibration on muscle activity during robotic-assisted walking were measured in 11 subjects with spinal cord injury (SCI) that could tolerate weight-supported walking, along with five neurologically intact individuals. Electromyographic (EMG) recordings were made from the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), vastus lateralis (VL), and medial hamstrings (MH) during gait.
View Article and Find Full Text PDFPoor physical stability is one of the single most important factors limiting the widespread use of the amorphous state in pharmaceutics. The purpose of this study is to move away from the case study approach by investigating thermodynamic and kinetic parameters as potential predictors of physical stability of amorphous drugs for a larger sample set (12 drugs). The relaxation time, fragility index and configurational thermodynamic properties (enthalpy, entropy and Gibbs free energy) were calculated and correlated to the actual stability behaviour, obtained for 12 drugs.
View Article and Find Full Text PDFUnderstanding the coating unit operation is imperative to improve product quality and reduce output risks for coated solid dosage forms. Three batches of sustained-release tablets coated with the same process parameters (pan speed, spray rate, etc.) were subjected to terahertz pulsed imaging (TPI) analysis followed by dissolution testing.
View Article and Find Full Text PDFThe compound [(Cu(PPh(3))(2))(3)(HATNMe(6))](BF(4))(3) has been synthesized and characterized by X-ray crystallography, resonance Raman spectroscopy, and density functional theory (DFT) calculations. The X-ray structure of solvated [(Cu(PPh(3))(2))(3)(HATNMe(6))](BF(4))(3) [rhombohedral, R3, a = b = 21.6404(4) A, c = 53.
View Article and Find Full Text PDFSpectroscopic, electrochemical and density functional theory (DFT) methods have been employed to investigate a group of [Re(CO)(3)(HT)(phen)](+) complexes (phen = 1,10-phenanthroline), and in particular the level of electronic communication between various hole-transporting (HT) ligands and the rhenium centre. Here, the HT ligand consists of a coordinating pyridine connected to dimethylaniline group through a single-, double- or triple-bond-connecting system. Electronic absorption, resonance Raman, and steady-state emission spectroscopy combined with lifetime studies and DFT calculations suggest that multiple dpi(Re)-->pi*(phen) metal-to-ligand charge transfers (MLCTs) exist for each complex, two of which significantly absorb at about 340 and 385 nm, and one that emits at approximately 540 nm.
View Article and Find Full Text PDFThe purpose of this research was to examine the role of isolated ankle-foot load in regulating locomotor patterns in humans with and without spinal cord injury (SCI). We used a powered ankle-foot orthosis to unilaterally load the ankle and foot during robotically assisted airstepping. The load perturbation consisted of an applied dorsiflexion torque designed to stimulate physiological load sensors originating from the ankle plantar flexor muscles and pressure receptors on the sole of the foot.
View Article and Find Full Text PDFArch Phys Med Rehabil
January 2009
Objectives: To test the hypothesis that reducing vertical center of mass (COM) displacement will lower the metabolic cost of human walking. To examine changes in joint work associated with increasing and decreasing vertical COM movement during gait.
Design: Randomized repeated measures.
Spectrochim Acta A Mol Biomol Spectrosc
February 2009
The spectral properties of 1,6,7,12,13,18-hexaazatrinaphthylene (HATN) and a number of related compounds are modeled using density functional theory, B3LYP. The calculations predict the frequencies with mean absolute deviation of 6 cm(-1) and there is little improvement on going to basis sets larger than 6-31 G(d). The substituent effects on the observed spectra are modeled effectively in both frequency shifts and relative intensities.
View Article and Find Full Text PDFSolid form screening, the activity of generating and analysing different solid forms of an active pharmaceutical ingredient (API), has become an essential part of drug development. The multi-step screening process needs to be designed, performed and evaluated carefully, since the decisions made based on the screening may have consequences on the whole lifecycle of a pharmaceutical product. The selection of the form for development is made after solid form screening.
View Article and Find Full Text PDFThe ability of terahertz pulsed imaging (TPI) to be employed as an analytical tool for monitoring a film coating unit operation and to assess the success of a subsequent process scale-up was explored in this study. As part of a process scale-up development, a total of 190 sustained-release tablets were sampled at 10% increments of the amount of polymer applied, from a lab-scale and a pilot-scale coating run. These tablets were subjected to TPI analysis, followed by dissolution testing.
View Article and Find Full Text PDFThe aim of this study was to investigate the structure of different solid-state forms of fenofibrate, a drug that lacks strong intermolecular interactions such as hydrogen bonding. In addition to a structural analysis of crystalline and amorphous fenofibrate using infrared and Raman spectroscopy combined with density functional theory calculations [B3LYP 6-31G(d)], solid-state changes that occur upon recrystallization of amorphous fenofibrate were monitored and described using in situ Raman spectroscopy. A comparison of the calculated vibrational spectra of a fenofibrate monomer and two dimer structures with the experimental vibrational spectra of crystalline and amorphous fenofibrate revealed conformational differences in the orientation of the two benzyl rings in the fenofibrate molecule and structural differences between the different solid-state forms in aliphatic parts of the drug molecule.
View Article and Find Full Text PDFKnowledge of the solid-state properties is one of the key issues in understanding the performance of drugs. Recent developments in spectroscopic techniques have made them popular tools for solid phase analysis; they are fast, accurate and suitable for real-time measurements during processing, and further, they can be used to obtain structural understanding of solid forms, for example, by the use of multivariate analysis and computational chemistry. In this article emerging topics related to spectroscopic analysis of pharmaceutical solids are reviewed.
View Article and Find Full Text PDFInvestigations of a previously reported ligand, hexakis(2-pyridylmethyl)cyclotricatechylene (1), and a new tetrameric bridging ligand, octakis(2-pyridylmethyl)cyclotetracatechylene (2), the latter constructed on a larger cyclotetraveratrylene (CTTV) scaffold, are described. Variable-temperature NMR studies support a "sofa" conformation for 2, akin to studies on the parent compound. The coordination chemistry of 2 and its smaller trimeric homologue have also been investigated with silver(I), copper(II) and palladium(II) salts.
View Article and Find Full Text PDFThis review outlines recent applications of Raman and terahertz spectroscopies within the field of pharmaceutical research. Of the two approaches, Raman is better established and more accessible, and is responsible for the majority of reviewed studies. Both techniques feature limitations, however, which are discussed in the context of methods used to circumvent apparent restrictions.
View Article and Find Full Text PDFThe potential of terahertz pulsed imaging (TPI) to predict the dissolution performance in sustained-release tablets was investigated in this study. Batches of coated tablets with similar weight gain during the coating process at the lab and pilot scales were subjected to non-destructive imaging by TPI and subsequently analysed by dissolution testing. The results from the dissolution tests revealed significant differences in the product performance between the lab and pilot scales (Student t-test, P<0.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2007
Background: We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.
View Article and Find Full Text PDF