Publications by authors named "Keith E Gipson"

Prolonged use of venoarterial extracorporeal membrane oxygenation (VA ECMO) may be complicated by end-organ dysfunction. Although gaseous microemboli (GME) are thought to damage end organs during cardiopulmonary bypass, patient exposures to GME have not been well characterized during VA ECMO. We therefore performed an observational study of GME in adult VA ECMO patients, with correlation to clinical events during routine patient care.

View Article and Find Full Text PDF

Minocycline-induced hyperpigmentation of tissues has been documented previously, but extensive cardiovascular involvement is rarely described in literature. We report a case of marked cardiovascular hyperpigmentation resulting from approximately 4 years of minocycline exposure. We will highlight how intraoperative differentiation of minocycline-induced hyperpigmentation from more sinister causes of discoloration led to the appropriate surgical management.

View Article and Find Full Text PDF

Although needleless connectors (NC) are frequently used in the perioperative setting, the potential of modern NCs to slow delivery of IV fluids has not been thoroughly studied. We examined flow characteristics of 5 NC models during pressurized delivery of crystalloid and banked red blood cells from a Level 1 warmer through various IV catheters. Crystalloid flow rates were reduced by 29% to 85% from control in catheters >18 gauge, while red blood cell flow reductions ranged from 22% to 76% in these catheters (all P < 0.

View Article and Find Full Text PDF

Background: Numerous gaseous microemboli (GME) are delivered into the arterial circulation during cardiopulmonary bypass (CPB). These emboli damage end organs through multiple mechanisms that are thought to contribute to neurocognitive deficits after cardiac surgery. Here, we use hypobaric oxygenation to reduce dissolved gases in blood and greatly reduce GME delivery during CPB.

View Article and Find Full Text PDF

We studied inositol-1,4,5-trisphosphate (IP(3)) receptor-dependent intracellular Ca(2+) waves in CA1 hippocampal and layer V medial prefrontal cortical pyramidal neurons using whole-cell patch-clamp recordings and Ca(2+) fluorescence imaging. We observed that Ca(2+) waves propagate in a saltatory manner through dendritic regions where increases in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) were large and fast ('hot spots') separated by regions where increases in [Ca(2+)](i) were comparatively small and slow ('cold spots'). We also observed that Ca(2+) waves typically initiate in hot spots and terminate in cold spots, and that most hot spots, but few cold spots, are located at dendritic branch points.

View Article and Find Full Text PDF

GABA, acting via GABA(A) receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades.

View Article and Find Full Text PDF

The mammalian hippocampus, together with subcortical and cortical areas, is responsible for some forms of learning and memory. Proper hippocampal function depends on the highly dynamic nature of its circuitry, including the ability of synapses to change their strength for brief to long periods of time. In this study, we focused on a transient depression of glutamatergic synaptic transmission at Schaffer collateral synapses in acute hippocampal slices.

View Article and Find Full Text PDF