Although significant progress has been made in understanding multisensory interactions at the behavioral level, their underlying neural mechanisms remain relatively poorly understood in cortical areas, particularly during the control of action. In recent experiments where animals reached to and actively maintained their arm position at multiple spatial locations while receiving either proprioceptive or visual-proprioceptive position feedback, multisensory interactions were shown to be associated with reduced spiking (i.e.
View Article and Find Full Text PDF