Mol Plant Microbe Interact
April 2023
Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena.
View Article and Find Full Text PDFAbscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance.
View Article and Find Full Text PDFVolume electron microscopy, a powerful approach to generate large three-dimensional cell and tissue volumes at electron microscopy resolutions, is rapidly becoming a routine tool for understanding fundamental and applied biological questions. One of the enabling factors for its adoption has been the development of conventional fixation protocols with improved heavy metal staining. However, freeze-substitution with organic solvent-based fixation and staining has not realized the same level of benefit.
View Article and Find Full Text PDFPhenotyping specific plant traits is difficult when the samples to be measured are architecturally complex. Inflorescence and root system traits are of great biological interest, but these structures present unique phenotyping challenges due to their often complicated and three-dimensional (3D) forms. We describe how a large industrial scale X-ray tomography (XRT) instrument can be used to scan architecturally complex plant structures for the goal of rapid and accurate measurement of traits that are otherwise cumbersome or not possible to capture by other means.
View Article and Find Full Text PDFTo identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes.
View Article and Find Full Text PDFPlant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context.
View Article and Find Full Text PDFCapturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level.
View Article and Find Full Text PDFUnlike olfaction, taste, touch, vision, and proprioception, which are widespread across animal phyla, hearing is found only in vertebrates and some arthropods. The vast majority of invertebrate species are thus considered insensitive to sound. Here, we challenge this conventional view by showing that the earless nematode C.
View Article and Find Full Text PDFDevelopmental biology relies heavily on our ability to generate three-dimensional images of live biological specimens through time, and to map gene expression and hormone response in these specimens as they undergo development. The last two decades have seen an explosion of new bioimaging technologies that have pushed the limits of spatial and temporal resolution and provided biologists with invaluable new tools. However, plant tissues are difficult to image, and no single technology fits all purposes; choosing between many bioimaging techniques is not trivial.
View Article and Find Full Text PDFInflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns.
View Article and Find Full Text PDFUnderstanding how an organism's phenotypic traits are conditioned by genetic and environmental variation is a central goal of biology. Root systems are one of the most important but poorly understood aspects of plants, largely due to the three-dimensional (3D), dynamic, and multiscale phenotyping challenge they pose. A critical gap in our knowledge is how root systems build in complexity from a single primary root to a network of thousands of roots that collectively compete for ephemeral, heterogeneous soil resources.
View Article and Find Full Text PDFBackground And Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients.
View Article and Find Full Text PDFFront Cell Neurosci
November 2017
Cyclodextrins are a family of cyclic oligosaccharides with widespread usage in medicine, industry and basic sciences owing to their ability to solubilize and stabilize guest compounds. In medicine, cyclodextrins primarily act as a complexing vehicle and consequently serve as powerful drug delivery agents. Recently, uncomplexed cyclodextrins have emerged as potent therapeutic compounds in their own right, based on their ability to sequester and mobilize cellular lipids.
View Article and Find Full Text PDFVertebrate hearing organs manifest cellular asymmetries across the radial axis that underlie afferent versus efferent circuits between the inner ear and the brain. Therefore, understanding the molecular control of patterning across this axis has important functional implications. Radial axis patterning begins before the cells become postmitotic and is likely linked to the onset of asymmetric expression of secreted factors adjacent to the sensory primordium.
View Article and Find Full Text PDFImpairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge.
View Article and Find Full Text PDFHair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration.
View Article and Find Full Text PDFExamination of fire debris can provide information about the types of materials which were present at the time of the fire to give insights for fire scene reconstruction and understanding compartment fire dynamics. This paper demonstrates the ability of Raman spectroscopy for material identification postfire in complex situations, such as the production of fused masses during fire dropdown. A validated Raman spectral library is combined with Raman mapping in three fire case studies, to determine the individual materials in the fused masses formed.
View Article and Find Full Text PDFRNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively.
View Article and Find Full Text PDFCyclodextrins are simple yet powerful molecules widely used in medicinal formulations and industry for their ability to stabilize and solubilize guest compounds. However, recent evidence shows that 2-hydroxypropyl-β-cyclodextrin (HPβCD) causes severe hearing loss in mice, selectively killing outer hair cells (OHC) within 1 week of subcutaneous drug treatment. In the current study, the impact of HPβCD on auditory physiology and pathology was explored further as a function of time and route of administration.
View Article and Find Full Text PDFUnlabelled: Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells.
View Article and Find Full Text PDFObjective: To investigate the relation between first-trimester fetal growth discrepancy, as assessed by crown-rump length (CRL) at 11+0 to 13+6 weeks of gestation, and subsequent development of preeclampsia (PE) in dichorionic diamniotic (DCDA) twin pregnancies. The association between inter-twin CRL and birth weight (BW) discrepancy was also investigated.
Methods: This was a retrospective, case-control study of DCDA twin pregnancies.
Small conductance Ca(2+)-sensitive potassium (SK2) channels are voltage-independent, Ca(2+)-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca(2+) permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission.
View Article and Find Full Text PDFCrop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments.
View Article and Find Full Text PDFUnderstanding the impact of treatment policies on patient outcomes is essential in improving all aspects of patient care. The BC Cancer Agency is a provincial program that provides cancer care on a population basis for 4.5 million residents.
View Article and Find Full Text PDF