Purpose: To assess the ability of the Annalise Enterprise CXR Triage Trauma (Annalise AI Pty Ltd, Sydney, NSW, Australia) artificial intelligence model to identify vertebral compression fractures on chest radiographs and its potential to address undiagnosed osteoporosis and its treatment.
Materials And Methods: This retrospective study used a consecutive cohort of 596 chest radiographs from four US hospitals between 2015 and 2021. Each radiograph included both frontal (anteroposterior or posteroanterior) and lateral projections.
The opportunistic use of radiological examinations for disease detection can potentially enable timely management. We assessed if an index created by an AI software to quantify chest radiography (CXR) findings associated with heart failure (HF) could distinguish between patients who would develop HF or not within a year of the examination. Our multicenter retrospective study included patients who underwent CXR without an HF diagnosis.
View Article and Find Full Text PDFPurpose: We compared the performance of generative artificial intelligence (AI) (Augmented Transformer Assisted Radiology Intelligence [ATARI, Microsoft Nuance, Microsoft Corporation, Redmond, Washington]) and natural language processing (NLP) tools for identifying laterality errors in radiology reports and images.
Methods: We used an NLP-based (mPower, Microsoft Nuance) tool to identify radiology reports flagged for laterality errors in its Quality Assurance Dashboard. The NLP model detects and highlights laterality mismatches in radiology reports.
Purpose: We created an infrastructure for no code machine learning (NML) platform for non-programming physicians to create NML model. We tested the platform by creating an NML model for classifying radiographs for the presence and absence of clavicle fractures.
Methods: Our IRB-approved retrospective study included 4135 clavicle radiographs from 2039 patients (mean age 52 ± 20 years, F:M 1022:1017) from 13 hospitals.
Background And Purpose: Mass effect and vasogenic edema are critical findings on CT of the head. This study compared the accuracy of an artificial intelligence model (Annalise Enterprise CTB) with consensus neuroradiologists' interpretations in detecting mass effect and vasogenic edema.
Materials And Methods: A retrospective stand-alone performance assessment was conducted on data sets of noncontrast CT head cases acquired between 2016 and 2022 for each finding.
Purpose: Medical imaging accounts for 85% of digital health's venture capital funding. As funding grows, it is expected that artificial intelligence (AI) products will increase commensurately. The study's objective is to project the number of new AI products given the statistical association between historical funding and FDA-approved AI products.
View Article and Find Full Text PDFBackground: Large language model (LLM)-based artificial intelligence chatbots direct the power of large training data sets toward successive, related tasks as opposed to single-ask tasks, for which artificial intelligence already achieves impressive performance. The capacity of LLMs to assist in the full scope of iterative clinical reasoning via successive prompting, in effect acting as artificial physicians, has not yet been evaluated.
Objective: This study aimed to evaluate ChatGPT's capacity for ongoing clinical decision support via its performance on standardized clinical vignettes.
Objective: Despite rising popularity and performance, studies evaluating the use of large language models for clinical decision support are lacking. Here, we evaluate ChatGPT (Generative Pre-trained Transformer)-3.5 and GPT-4's (OpenAI, San Francisco, California) capacity for clinical decision support in radiology via the identification of appropriate imaging services for two important clinical presentations: breast cancer screening and breast pain.
View Article and Find Full Text PDFRadiologic tests often contain rich imaging data not relevant to the clinical indication. Opportunistic screening refers to the practice of systematically leveraging these incidental imaging findings. Although opportunistic screening can apply to imaging modalities such as conventional radiography, US, and MRI, most attention to date has focused on body CT by using artificial intelligence (AI)-assisted methods.
View Article and Find Full Text PDFPurpose: To evaluate the real-world performance of two FDA-approved artificial intelligence (AI)-based computer-aided triage and notification (CADt) detection devices and compare them with the manufacturer-reported performance testing in the instructions for use.
Materials And Methods: Clinical performance of two FDA-cleared CADt large-vessel occlusion (LVO) devices was retrospectively evaluated at two separate stroke centers. Consecutive "code stroke" CT angiography examinations were included and assessed for patient demographics, scanner manufacturer, presence or absence of CADt result, CADt result, and LVO in the internal carotid artery (ICA), horizontal middle cerebral artery (MCA) segment (M1), Sylvian MCA segments after the bifurcation (M2), precommunicating part of cerebral artery, postcommunicating part of the cerebral artery, vertebral artery, basilar artery vessel segments.
Rationale And Objectives: Suboptimal chest radiographs (CXR) can limit interpretation of critical findings. Radiologist-trained AI models were evaluated for differentiating suboptimal(sCXR) and optimal(oCXR) chest radiographs.
Materials And Methods: Our IRB-approved study included 3278 CXRs from adult patients (mean age 55 ± 20 years) identified from a retrospective search of CXR in radiology reports from 5 sites.
The multitude of artificial intelligence (AI)-based solutions, vendors, and platforms poses a challenging proposition to an already complex clinical radiology practice. Apart from assessing and ensuring acceptable local performance and workflow fit to improve imaging services, AI tools require multiple stakeholders, including clinical, technical, and financial, who collaborate to move potential deployable applications to full clinical deployment in a structured and efficient manner. Postdeployment monitoring and surveillance of such tools require an infrastructure that ensures proper and safe use.
View Article and Find Full Text PDFImportance: Large language model (LLM) artificial intelligence (AI) chatbots direct the power of large training datasets towards successive, related tasks, as opposed to single-ask tasks, for which AI already achieves impressive performance. The capacity of LLMs to assist in the full scope of iterative clinical reasoning via successive prompting, in effect acting as virtual physicians, has not yet been evaluated.
Objective: To evaluate ChatGPT's capacity for ongoing clinical decision support via its performance on standardized clinical vignettes.
: Motion-impaired CT images can result in limited or suboptimal diagnostic interpretation (with missed or miscalled lesions) and patient recall. We trained and tested an artificial intelligence (AI) model for identifying substantial motion artifacts on CT pulmonary angiography (CTPA) that have a negative impact on diagnostic interpretation. : With IRB approval and HIPAA compliance, we queried our multicenter radiology report database (mPower, Nuance) for CTPA reports between July 2015 and March 2022 for the following terms: "motion artifacts", "respiratory motion", "technically inadequate", and "suboptimal" or "limited exam".
View Article and Find Full Text PDFChest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation.
View Article and Find Full Text PDFPurpose: To assess feasibility of automated segmentation and measurement of tracheal collapsibility for detecting tracheomalacia on inspiratory and expiratory chest CT images.
Methods: Our study included 123 patients (age 67 ± 11 years; female: male 69:54) who underwent clinically indicated chest CT examinations in both inspiration and expiration phases. A thoracic radiologist measured anteroposterior length of trachea in inspiration and expiration phase image at the level of maximum collapsibility or aortic arch (in absence of luminal change).
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61-66% (specificity 90-92%) for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI (r > 0.
View Article and Find Full Text PDFImportance: Early detection of pneumothorax, most often via chest radiography, can help determine need for emergent clinical intervention. The ability to accurately detect and rapidly triage pneumothorax with an artificial intelligence (AI) model could assist with earlier identification and improve care.
Objective: To compare the accuracy of an AI model vs consensus thoracic radiologist interpretations in detecting any pneumothorax (incorporating both nontension and tension pneumothorax) and tension pneumothorax.