The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design.
View Article and Find Full Text PDFMiniaturization of analytical instrumentation is paramount to enabling convenient in-field sensing. The recent thrust in potentiostat miniaturization for electrochemical sensing and general use has led to the development of commercial application specific integrated circuits (ASICs) that pack all the power of a benchtop instrument into one 5 mm × 5 mm chip. While the capabilities of these integrated circuits far exceed those of open-source potentiostats in the literature, the activation barrier for their implementation requires extensive electrical and software engineering expertise to overcome.
View Article and Find Full Text PDFTrace analysis of heavy metals in complex, environmentally relevant matrices remains a significant challenge for electrochemical sensors employing stripping voltammetry-based detection schemes. We present an alternative method capable of selectively preconcentrating Cu ions at the electrode surface using chelating polymer-wrapped multiwalled carbon nanotubes (MWCNTs). An electrochemical sensor consisting of poly-4-vinyl pyridine (P4VP)-wrapped MWCNTs anchored to a poly(ethylene terephthalate) (PET)-modified gold electrode ( = 1.
View Article and Find Full Text PDF