Publications by authors named "Keith C Ellis"

Unlabelled: Cancer therapies targeting metabolic derangements unique to cancer cells are emerging as a key strategy to address refractory solid tumors such as pancreatic ductal adenocarcinomas (PDAC) that exhibit resistance to extreme nutrient deprivation in the tumor microenvironment. Nicotinamide adenine dinucleotide (NAD) participates in multiple metabolic pathways and nicotinamide phosphoribosyl transferase (NAMPT) is one of the key intracellular enzymes that facilitate the synthesis of NAD. C-terminal binding proteins 1 and 2 (CtBP) are paralogous NAD-dependent oncogenic transcription factors and dehydrogenases that nucleate an epigenetic complex regulating a cohort of genes responsible for cancer proliferation and metastasis.

View Article and Find Full Text PDF

The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies.

View Article and Find Full Text PDF

Ctbp2 is a uniquely targetable oncogenic transcriptional coregulator, exhibiting overexpression in most common solid tumors, and critical to the tumor-initiating cell (TIC) transcriptional program. In the "CKP" mouse pancreatic ductal adenocarcinoma (PDAC) model driven by mutant K-Ras, Ctbp2 haploinsufficiency prolonged survival, abrogated peritoneal metastasis, and caused dramatic downregulation of c-Myc, a known critical dependency for TIC activity and tumor progression in PDAC. A small-molecule inhibitor of CtBP2, 4-chloro-hydroxyimino phenylpyruvate (4-Cl-HIPP) phenocopied Ctbp2 deletion, decreasing tumor burden similarly to gemcitabine, and the combination of 4-Cl-HIPP and gemcitabine further synergistically suppressed tumor growth.

View Article and Find Full Text PDF

C-terminal binding proteins (CtBP1/2) are oncogenic transcriptional coregulators and dehydrogenases often overexpressed in multiple solid tumors, including breast, colon, and ovarian cancer, and associated with poor survival. CtBPs act by repressing expression of genes responsible for apoptosis (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • C-terminal binding protein 2 (CtBP2) plays a key role in enhancing the formation of intestinal polyps in mice, a model for human Familial Adenomatous Polyposis (FAP).
  • Inhibition of CtBP2 using the compound 4-Cl-HIPP significantly reduced tumor-initiating cell populations and the overall number of polyps in the intestines of mice.
  • The mislocalization of CtBP2 from the nucleus to the cytoplasm in intestinal stem cells correlates with lower CD133 expression, indicating a complex relationship between CtBP2 activity, tumor initiation, and polyp formation.
View Article and Find Full Text PDF

Overproduction of cortisol by the hypothalamus-pituitary-adrenal hormone system results in the clinical disorder known as Cushing's syndrome. Genomics studies have identified a key mutation (L205R) in the α-isoform of the catalytic subunit of cAMP-dependent protein kinase (PKACα) in adrenal adenomas of patients with adrenocorticotropic hormone-independent Cushing's syndrome. Here, we conducted kinetics and inhibition studies on the L205R-PKACα mutant.

View Article and Find Full Text PDF

Chelation-directed C-H activation/C-C bond forming reactions utilizing homogeneous palladium(ii) and the Pd(ii)/Pd(iv) catalytic cycle have been previously reported. Here we report the first use of a solid-supported Pd(ii) catalyst [Pd(ii) nanoparticles on multiwalled carbon nanotubes, Pd(ii)/MWCNT] to carry out C-H activation/C-C bond forming reactions. The results presented demonstrate that the solid-supported Pd(ii)/MWCNT catalyst can effectively catalyze these arylation reactions using the Pd(ii)/Pd(iv) catalytic cycle.

View Article and Find Full Text PDF

Here we describe a convenient, inexpensive, and non-hazardous method for the measurement of the kinase activity of the catalytic subunit of cAMP-dependent protein kinase (PKACα). The assay is based on the separation of a substrate peptide labeled with a strong chromophore from the phosphorylated product peptide by high-performance liquid chromatograph (HPLC) and quantification of the product ratiometrically at a wavelength in the visual spectrum (Vis). The utility and reliability of the HPLC-Vis assay were demonstrated by characterizing the kinetic parameters (K, V) of the new Rh-MAB-Kemptide substrate, a commercially prepared TAMRA-Kemptide substrate, and ATP as well as the potency (IC, K) of the known PKACα inhibitors H89 and PKI(5-24).

View Article and Find Full Text PDF

C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools.

View Article and Find Full Text PDF

C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.

View Article and Find Full Text PDF

The design and development of irreversible kinase inhibitors is an expanding frontier of kinase drug discovery. The current approach to develop these inhibitors utilizes ATP-competitive inhibitor scaffolds to target non-catalytic cysteines in the kinase ATP-binding site. However, this approach is limited as not all kinases have a cysteine in the ATP-binding site that can be targeted.

View Article and Find Full Text PDF

N-Chelation-directed C-H activation reactions that utilize the Pd(II)/Pd(IV) catalytic cycle have been previously reported. To date, these reactions employ only homogeneous palladium catalysts. The first use of a solid-supported Pd(II) catalyst [Pd(II) nanoparticles on multiwalled carbon nanotubes, Pd(II)/MWCNT] to carry out N-chelation-directed C-H to C-O, C-Cl, and C-Br transformations is reported.

View Article and Find Full Text PDF

Oncogenic transcriptional coregulators C-terminal Binding Protein (CtBP) 1 and 2 possess regulatory d-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains that provide an attractive target for small molecule intervention. Findings that the CtBP substrate 4-methylthio 2-oxobutyric acid (MTOB) can interfere with CtBP oncogenic activity in cell culture and in mice confirm that such inhibitors could have therapeutic benefit. Recent crystal structures of CtBP 1 and 2 revealed that MTOB binds in an active site containing a dominant tryptophan and a hydrophilic cavity, neither of which are present in other D2-HDH family members.

View Article and Find Full Text PDF

Strategies to inhibit kinases by targeting the substrate binding site offer many advantages, including naturally evolved selectivity filters, but normally suffer from poor potency. In this work we propose a strategy to design and prepare covalent substrate-competitive kinase inhibitors as a method to improve potency. We have chosen AKT as the model kinase for this work.

View Article and Find Full Text PDF

The acidic residues of the "acid-alcohol pair" in CYP51 enzymes are uniformly replaced with histidine. Herein, we adopt the Mycobacterium tuberculosis (mt) enzyme as a model system to investigate these residues' roles in finely tuning the heme conformation, iron spin state, and formation and decay of the oxyferrous enzyme. Properties of the mtCYP51 and the T260A, T260V, and H259A mutants were interrogated using UV-Vis and resonance Raman spectroscopies.

View Article and Find Full Text PDF

The pyranonaphthoquinone (PNQ) lactone natural products, including 7-deoxykalafungin, have been reported to be potent and selective covalent inhibitors of AKT kinase. In this work we seek to identify structural features of the natural product scaffold that are essential for potency and selectivity. Using a deconstruction approach, we designed and prepared simplified analogues of 7-deoxykalafungin.

View Article and Find Full Text PDF

The increasing occurrence of drug-resistant bacterial infections in the clinic has created a need for new antibacterial agents. Natural products have historically been a rich source of both antibiotics and lead compounds for new antibacterial agents. The natural product simocyclinone D8 (SD8) has been reported to inhibit DNA gyrase, a validated antibacterial drug target, by a unique catalytic inhibition mechanism of action.

View Article and Find Full Text PDF

Simocyclinone D8 is an antibiotic isolated from Streptomyces antibioticus Tü 6040 that inhibits the supercoiling activity of DNA gyrase. It also exhibits an inhibitory effect on human topoisomerase II and an antiproliferative activity against some cancer cell lines. Our biochemical studies have revealed that simocyclinone D8 can inhibit the catalytic activity of human topoisomerase I.

View Article and Find Full Text PDF

Simocyclinone D8 (SD8) exhibits antibiotic activity against gram-positive bacteria but not against gram-negative bacteria. The molecular basis of the cytotoxicity of SD8 is not fully understood, although SD8 has been shown to inhibit the supercoiling activity of Escherichia coli gyrase. To understand the mechanism of SD8, we have employed biochemical assays to directly measure the sensitivities of E.

View Article and Find Full Text PDF

An enantiospecific synthesis was developed to generate both enantiomers of 7-(4-methoxyphenyl)-6-phenyl-2,3,8,8a-tetrahydroindolizin-5(1H)-one. A biological assay utilizing the HCT-116 colon cancer cell line to determine the cytotoxicity of these analogs revealed that only the (R)-enantiomer exhibited appreciable cytotoxicity with an IC(50) value of 0.2 microM.

View Article and Find Full Text PDF

[reaction: see text] A synthesis of the polypropionate marine defense substance (+)-membrenone C and its enantiomer that starts from (S)-2-methyl-3-(tert-butyldimethylsilyloxy)propanal is described. Key steps include (1) additions of chiral allenylmetal reagents to effect both chain homologation and the concomitant introduction of four stereo centers, (2) a bis-intramolecular hydrosilylation-oxidation sequence to install beta-hydroxy ketone subunits, and (3) a bis-intramolecular aldol reaction to construct the two dihydropyrone termini.

View Article and Find Full Text PDF