The study of transcription factors that determine specialized neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electrophysiologically excitable cells that link the oxygen concentration of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by type I cells of the carotid body, and recent work has revealed one isoform of the hypoxia-inducible transcription factor (HIF), HIF-2α, as having a nonredundant role in the development and function of that organ.
View Article and Find Full Text PDFBackground And Aims: There is a lack of basic science data on the effect of dexmedetomidine on the hypoxic chemosensory reflex with both depression and stimulation suggested. The primary aim of this study was to assess if dexmedetomidine inhibited the cellular response to hypoxia in rat carotid body glomus cells, the cells of the organs mediating acute hypoxic ventilatory response (AHVR). Additionally, we used a small sample of mice to assess if there was any large influence of subsedative doses of dexmedetomidine on AHVR.
View Article and Find Full Text PDFBackground: The degree to which different volatile anesthetics depress carotid body hypoxic response relates to their ability to activate TASK potassium channels. Most commonly, volatile anesthetic pairs act additively at their molecular targets. We examined whether this applied to carotid body TASK channels.
View Article and Find Full Text PDFHypoxia-inducible factor (HIF) is strikingly upregulated in many types of cancer, and there is great interest in applying inhibitors of HIF as anticancer therapeutics. The most advanced of these are small molecules that target the HIF-2 isoform through binding the PAS-B domain of HIF-2α. These molecules are undergoing clinical trials with promising results in renal and other cancers where HIF-2 is considered to be driving growth.
View Article and Find Full Text PDFIn humans the intravenous anaesthetic propofol depresses ventilatory responses to hypoxia and CO. Animal studies suggest that this may in part be due to inhibition of synaptic transmission between chemoreceptor glomus cells of the carotid body and the afferent carotid sinus nerve. It is however unknown if propofol can also act directly on the glomus cell.
View Article and Find Full Text PDFSensing of hypoxia and acidosis in arterial chemoreceptors is thought to be mediated through the inhibition of TASK and possibly other (e.g., BK ) potassium channels which leads to membrane depolarization, voltage-gated Ca-entry, and neurosecretion.
View Article and Find Full Text PDFKey Points: The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia.
View Article and Find Full Text PDFCardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known.
View Article and Find Full Text PDFSingle or combinatorial administration of β-blockers is a mainstay treatment strategy for conditions caused by sympathetic overactivity. Conventional wisdom suggests that the main beneficial effect of β-blockers includes resensitization and restoration of β1-adrenergic signaling pathways in the myocardium, improvements in cardiomyocyte contractility, and reversal of ventricular sensitization. However, emerging evidence indicates that another beneficial effect of β-blockers in disease may reside in sympathetic neurons.
View Article and Find Full Text PDFBackground: It is difficult to design a system to reliably deliver volatile anaesthetics such as halothane or isoflurane to in vitro preparations such as tissues or cells cultures: the very volatility of the drugs means that they can rapidly dissipate from even carefully-prepared solutions. Furthermore, many experiments require the control of other gases (such as oxygen or carbon dioxide) which requires constant perfusion.
New Method: We describe a constant perfusion system that is air-tight (i.
A functional role for the mitochondria in acute O2 sensing in the carotid body (CB) remains undetermined. Whilst total inhibition of mitochondrial activity causes intense CB stimulation, it is unclear whether this response can be moderated such that graded impairment of oxidative phosphorylation might be a mechanism that sets and modifies the O2 sensitivity of the whole organ. We assessed NADH autofluorescence and [Ca2+]i in freshly dissociated CB type I cells and sensory chemoafferent discharge frequency in an intact CB preparation, in the presence of varying concentrations of nitrite (NO2 −), a mitochondrial nitric oxide (NO) donor and a competitive inhibitor of mitochondrial complex IV.
View Article and Find Full Text PDFVentilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2016
The identity of the oxygen sensor in arterial chemoreceptors has been the subject of much speculation. One of the oldest hypotheses is that oxygen is sensed through oxidative phosphorylation. There is a wealth of data demonstrating that arterial chemoreceptors are excited by inhibitors of oxidative phosphorylation.
View Article and Find Full Text PDFArterial chemoreceptors play a vital role in cardiorespiratory control by providing the brain with information regarding blood oxygen, carbon dioxide, and pH. The main chemoreceptor, the carotid body, is composed of sensory (type 1) cells which respond to hypoxia or acidosis with a depolarising receptor potential which in turn activates voltage-gated calcium entry, neurosecretion and excitation of adjacent afferent nerves. The receptor potential is generated by inhibition of Twik-related acid-sensitive K(+) channel 1 and 3 (TASK1/TASK3) heterodimeric channels which normally maintain the cells' resting membrane potential.
View Article and Find Full Text PDFThe view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.
View Article and Find Full Text PDFCell Calcium
December 2013
Sensory neurons are able to detect tissue ischaemia and both transmit information to the brainstem as well as release local vasoactive mediators. Their ability to sense tissue ischaemia is assumed to be primarily mediated through proton sensing ion channels, lack of oxygen however may also affect sensory neuron function. In this study we investigated the effects of anoxia on isolated capsaicin sensitive neurons from rat nodose ganglion.
View Article and Find Full Text PDFIn rat arterial chemoreceptors, background potassium channels play an important role in maintaining resting membrane potential and promoting depolarization and excitation in response to hypoxia or acidosis. It has been suggested that these channels are a heterodimer of TASK-1 and TASK-3 based on their similarity to heterologously expressed TASK-1/3 fusion proteins. In this study, we sought to confirm the identity of these channels through germline ablation of Task-1 (Kcnk3) and Task-3 (Kcnk9) in mice.
View Article and Find Full Text PDFThe hypoxia-inducible factor (HIF) family of transcription factors coordinates diverse cellular and systemic responses to hypoxia. Chuvash polycythemia (CP) is an autosomal recessive disorder in humans in which there is impaired oxygen-dependent degradation of HIF, resulting in long-term systemic elevation of HIF levels at normal oxygen tensions. CP patients demonstrate the characteristic features of ventilatory acclimatization to hypoxia, namely, an elevated baseline ventilation and enhanced acute hypoxic ventilatory response (AHVR).
View Article and Find Full Text PDFOxygen-dependent prolyl hydroxylation of hypoxia-inducible factor (HIF) by a set of closely related prolyl hydroxylase domain enzymes (PHD1, 2 and 3) regulates a range of transcriptional responses to hypoxia. This raises important questions about the role of these oxygen-sensing enzymes in integrative physiology. We investigated the effect of both genetic deficiency and pharmacological inhibition on the change in ventilation in response to acute hypoxic stimulation in mice.
View Article and Find Full Text PDFThe mechanism of oxygen sensing in arterial chemoreceptors is unknown but has often been linked to mitochondrial function. A common criticism of this hypothesis is that mitochondrial function is insensitive to physiological levels of hypoxia. Here we investigate the effects of hypoxia (down to 0.
View Article and Find Full Text PDFHypertension is associated with the early onset of cardiac sympathetic hyperresponsiveness and enhanced intracellular Ca(2+) concentration [Ca(2+)](i) in sympathetic neurons from both prehypertensive and hypertensive, spontaneously hypertensive rats (SHRs). Oxidative stress is a hallmark of hypertension, therefore, we tested the hypothesis that the inhibitory action of the nitric oxide-cGMP pathway on [Ca(2+)](i) transients is impaired in cardiac sympathetic neurons from the SHR. Stellate ganglia were isolated from young prehypertensive SHRs and age-matched normotensive Wistar-Kyoto rats.
View Article and Find Full Text PDFIt has been proposed that endogenous H(2)S mediates oxygen sensing in chemoreceptors; this study investigates the mechanisms by which H(2)S excites carotid body type 1 cells. H(2)S caused a rapid reversible increase in intracellular calcium with EC(50) ≈ 6 μM. This [Ca(2+)](i) response was abolished in Ca-free Tyrode.
View Article and Find Full Text PDFHypertension is associated with cardiac noradrenergic hyperactivity, although it is not clear whether this precedes or follows the development of hypertension itself. We hypothesized that Ca(2+) homeostasis in postganglionic sympathetic neurons is impaired in spontaneously hypertensive rats (SHRs) and may occur before the development of hypertension. The depolarization-induced rise in intracellular free calcium concentration ([Ca(2+)](i); measured using fura-2-acetoxymethyl ester) was significantly larger in cultured sympathetic neurons from prehypertensive SHRs than in age matched normotensive Wistar-Kyoto rats.
View Article and Find Full Text PDFIn humans the ventilatory response to sustained isocapnic hypoxia is biphasic: after an initial rapid rise there follows a steady decline of the next 20-30 min termed hypoxic ventilatory decline (HVD). It is not known whether this secondary phase resides in a reducing activity of the peripheral or the central chemoreflex. We wished to assess if the Ca(2+) transient that occurs in glomus cells in response to hypoxia exhibits a form of HVD with sustained hypoxia that parallels the human ventilatory response, or if it exhibits a different response.
View Article and Find Full Text PDF