Spinal cord injury creates an inflammatory microenvironment that regulates the capacity of transplanted human Neural Stem Cells (hNSC) to migrate, differentiate, and repair injury. Despite similarities in gene expression and markers detected by immunostaining, hNSC populations exhibit heterogeneous therapeutic potential. This heterogeneity derives in part from the epigenetic landscape in the hNSC genome, specifically methylation (5mC) and hydroxymethylation (5hmC) state, which may affect the response of transplanted hNSC in the injury microenvironment and thereby modulate repair capacity.
View Article and Find Full Text PDFXenon (Xe) has shown great potential as a stroke treatment due to its exceptional ability to protect brain tissue without inducing side effects. We have previously developed Xe-loaded liposomes for the ultrasound-activated delivery of Xe into the cerebral region and demonstrated their therapeutic efficacy. At present, the sole FDA-approved thrombolytic agent for stroke treatment is recombinant tissue plasminogen activator (rtPA).
View Article and Find Full Text PDFObjective: To evaluate the epigenetic consequence on the methylome and subsequent transcriptome in euploid blastocysts of male-factor (MF) infertility patients.
Design: Methylome and transcriptome analysis on individual oligoasthenoteratozoospermia (OAT [MF]) blastocysts.
Setting: Infertility clinic.
Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells.
View Article and Find Full Text PDFAn epitope tag introduced to a gene of interest (GOI) greatly increases the ease of studying cellular proteins. Rapid PCR-based strategies for epitope tagging a protein's C-terminus at its native gene locus are widely used in yeast. C-terminal epitope tagging is not suitable for all proteins, however.
View Article and Find Full Text PDFThis chapter describes the different methods used for localization of proteins and organelles in Pichia pastoris. A series of plasmids and a modified immunofluorescence protocol for localization and co-localization of proteins and organelles are described. Also included are protocols for the labeling of different subcellular organelles with vital stains.
View Article and Find Full Text PDF