Publications by authors named "Keith Bonham"

Loss of function screens using shRNA (short hairpin RNA) and CRISPR (clustered regularly interspaced short palindromic repeats) are routinely used to identify genes that modulate responses of tumor cells to anti-cancer drugs. Here, by integrating GSEA (Gene Set Enrichment Analysis) and CMAP (Connectivity Map) analyses of multiple published shRNA screens, we identified a core set of pathways that affect responses to multiple drugs with diverse mechanisms of action. This suggests that these pathways represent "weak points" or "Achilles heels", whose mild disturbance should make cancer cells vulnerable to a variety of treatments.

View Article and Find Full Text PDF

Background: Synthetic lethal interactions (SLIs) that occur between gene pairs are exploited for cancer therapeutics. Studies in the model eukaryote yeast have identified ~ 550,000 negative genetic interactions that have been extensively studied, leading to characterization of novel pathways and gene functions. This resource can be used to predict SLIs that can be relevant to cancer therapeutics.

View Article and Find Full Text PDF

Chromosomal rearrangements involving the mixed-lineage leukemia (MLL1) gene are common in a unique group of acute leukemias, with more than 100 fusion partners in this malignancy alone. However, do these fusions occur or have a role in solid tumors? We performed extensive network analyses of MLL1-fusion partners in patient datasets, revealing that multiple MLL1-fusion partners exhibited significant interactions with the androgen-receptor signaling pathway. Further exploration of tumor sequence data from TCGA predicts the presence of MLL1 fusions with truncated SET domain in prostate tumors.

View Article and Find Full Text PDF

Can transcriptomic alterations drive the evolution of tumors? We asked if changes in gene expression found in all patients arise earlier in tumor development and can be relevant to tumor progression. Our analyses of non-mutated genes from the non-amplified regions of the genome of 158 triple-negative breast cancer (TNBC) cases identified 219 exclusively expression-altered (EEA) genes that may play important role in TNBC. Phylogenetic analyses of these genes predict a "punctuated burst" of multiple gene upregulation events occurring at early stages of tumor development, followed by minimal subsequent changes later in tumor progression.

View Article and Find Full Text PDF

The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness.

View Article and Find Full Text PDF

The triple-negative breast cancer subtype is highly aggressive and has no defined therapeutic target. Fyn-related kinase (FRK) is a non-receptor tyrosine kinase, reported to be downregulated in breast cancer and gliomas, where it is suggested to have tumor suppressor activity. We examined the expression profile of FRK in a panel of 40 breast cancer cells representing all the major subtypes, as well as in 4 non-malignant mammary epithelial cell lines.

View Article and Find Full Text PDF

Chromosomal Instability (CIN) is regarded as a unifying feature of heterogeneous tumor populations, driving intratumoral heterogeneity. Polo-Like Kinase 1 (PLK1), a serine-threonine kinase that is often overexpressed across multiple tumor types, is one of the key regulators of CIN and is considered as a potential therapeutic target. However, targeting PLK1 has remained a challenge due to the off-target effects caused by the inhibition of other members of the polo-like family.

View Article and Find Full Text PDF

Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is activated in response to hypoxia-induced stress such as in the tumor microenvironment. This study examined the role of CREB3L1 (cyclic AMP [cAMP]-responsive element-binding protein 3-like protein 1), a member of the UPR, in breast cancer development and metastasis. Initial experiments identified the loss of CREB3L1 expression in metastatic breast cancer cell lines compared to low-metastasis or nonmetastatic cell lines.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACIs) are promising anti-tumor agents that selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Fundamentally, HDACIs are proposed to function by activating the transcription of genes, including the potent cyclin dependent kinase inhibitor p21(WAF1). However, HDACIs primarily increase p21(WAF1) expression at the post-transcriptional level in HepG2 cells, implying that these anti-tumor agents regulate genes at multiple levels.

View Article and Find Full Text PDF

N-myristoyltransferase (NMT) exists in two isoforms, NMT1 and NMT2, that catalyze myristoylation of various proteins crucial in signal transduction, cellular transformation, and oncogenesis. We have recently demonstrated that NMT1 is essential for the early development of mouse embryo. In this report, we have demonstrated that an invariant consequence of NMT1 knock out is defective myelopoesis.

View Article and Find Full Text PDF

We have recently reported novel short nucleotide (six and eighteen) polymorphic insertions, in the MCL-1 promoter and their association with higher mRNA and protein levels. The aim of the present study was to test the hypothesis that these insertions directly affect MCL-1 gene expression. Haematopoietic and epithelial human cell lines were transfected with +0, +6, or +18 MCL-1 promoter fragments positioned upstream of the Firefly luciferase reporter gene.

View Article and Find Full Text PDF

Previously, we had described a housekeeping like promoter that regulates expression of the SRC gene in many cell types. This promoter was found to be regulated by Sp1 and hnRNP-K. However, at that time we could find little evidence supporting a significant role for Sp3 in SRC activation.

View Article and Find Full Text PDF

A number of viral and eukaryotic proteins which undergo a lipophilic modification by the enzyme N-myristoyltransferase (NMT: NMT1 and NMT2) are required for signal transduction and regulatory functions. To investigate whether NMT2 contributes to the pathogenesis of colorectal carcinoma, we observed a higher expression of NMT2 in most of the cases of cancerous tissues compared to normal tissues (84.6% of cases; P < 0.

View Article and Find Full Text PDF
Article Synopsis
  • Histone deacetylase inhibitors (HDIs) like butyrate and trichostatin A (TSA) can halt cancer cell growth, induce differentiation, and lead to cell death, showing potential in cancer treatment due to their selective gene expression modulation.
  • The study highlights how these HDIs reduce the expression of c-Src and other Src family kinases (SFKs) in colon cancer cell lines, revealing that most cell lines exhibit high levels of at least two SFKs.
  • The observed repression of SFKs by butyrate and TSA occurs in a dose- and time-dependent manner and is linked to transcriptional changes, suggesting that targeting SFKs is significant for the anticancer effects of HDIs
View Article and Find Full Text PDF

Protein myristoylation is a co-translational process, catalyzed by N-myristoyltransferase (NMT) that occurs after the initiating methionine is removed by methionine aminopeptidase (MetAP). The enzymes NMT and MetAP play a major role in the process of myristoylation of oncoproteins including the c-src family. In this study, we examined the levels of expression of MetAP2, NMT, and NMT inhibitor protein 71 (NIP71) in human colon cancer cell lines (HCCLs).

View Article and Find Full Text PDF

Alternative promoters allow for increased spatial and temporal diversity in expression patterns for a single gene. The human SRC gene, encoding the non-receptor c-Src tyrosine kinase, is regulated by two alternative promoters separated by approximately 1 kb. The distal SRC1alpha promoter is tissue-restricted, while expression of the proximal SRC1A promoter appears to be ubiquitous.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDIs) are thought to act primarily at the level of transcription inducing cell cycle arrest, differentiation and/or apoptosis in many cancer cell types. Induction of the potent cdk/cyclin inhibitor p21WAF1 is a key feature of this HDI mediated transcriptional re-programming phenomenon. However, in the current study we report that HDIs are also capable of inducing p21WAF1 through purely post-transcriptional events, namely increased mRNA stability.

View Article and Find Full Text PDF

Human pp60c-Src (or c-Src) is a 60 kDa nonreceptor tyrosine kinase encoded by the SRC gene and is the cellular homologue to the potent transforming v-Src viral oncogene. c-Src functions at the hub of a vast array of signal transduction cascades that influence cellular proliferation, differentiation, motility, and survival. c-Src activation has been documented in upwards of 50% of tumors derived from the colon, liver, lung, breast, and pancreas.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDIs) induce cell cycle arrest, differentiation, or apoptosis in numerous cancer cell types both in vivo and in vitro. These dramatic effects are the result of a specific reprogramming of gene expression. However, the mechanism by which these agents activate the transcription of some genes, such as p21(WAF1), but repress others, such as cyclin D1, is currently unknown.

View Article and Find Full Text PDF

The human SRC gene encodes pp60(c-src), a non-receptor tyrosine kinase involved in numerous signaling pathways. Activation or overexpression of c-Src has also been linked to a number of important human cancers. Transcription of the SRC gene is complex and regulated by two closely linked but highly dissimilar promoters, each associated with its own distinct non-coding exon.

View Article and Find Full Text PDF

Histone deacetylase inhibitors have generated keen interest as potential chemopreventive and chemotherapeutic agents due to their ability to induce cell cycle arrest, differentiation, and apoptosis in a diverse group of cancer derived cell lines. Activation of the 60 kDa non-receptor tyrosine kinase, c-Src, has been a consistent finding in many tumors and tumor derived cell lines, and has been implicated in these same cellular processes. We have shown that the histone deacetylase inhibitors, sodium butyrate and Trichostatin A, repressed c-Src mRNA and protein expression in a dose-dependent manner in cell lines derived from cancers of the colon, breast and liver.

View Article and Find Full Text PDF