J Healthc Inform Res
December 2017
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity.
View Article and Find Full Text PDFAgent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters.
View Article and Find Full Text PDFPublic health decision makers need access to high resolution situation assessment tools for understanding the extent of various epidemics in different regions of the world. In addition, they need insights into the future course of epidemics by way of forecasts. Such forecasts are essential for planning the allocation of limited resources and for implementing several policy-level and behavioral intervention strategies.
View Article and Find Full Text PDFWe present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios.
View Article and Find Full Text PDFACM Trans Model Comput Simul
January 2014
We describe the design and prototype implementation of Indemics (Interactive EpidemicSimulation)-a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based .
View Article and Find Full Text PDFT helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization.
View Article and Find Full Text PDFDisasters affect a society at many levels. Simulation-based studies often evaluate the effectiveness of 1 or 2 response policies in isolation and are unable to represent impact of the policies to coevolve with others. Similarly, most in-depth analyses are based on a static assessment of the "aftermath" rather than capturing dynamics.
View Article and Find Full Text PDFDifferentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg).
View Article and Find Full Text PDFWe present a synthetic information and modeling environment that can allow policy makers to study various counter-factual experiments in the event of a large human-initiated crisis. The specific scenario we consider is a ground detonation caused by an improvised nuclear device in a large urban region. In contrast to earlier work in this area that focuses largely on the prompt effects on human health and injury, we focus on co-evolution of individual and collective behavior and its interaction with the differentially damaged infrastructure.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
September 2012
Clinical symptoms of microbial infection of the gastrointestinal (GI) tract are often exacerbated by inflammation induced pathology. Identifying novel avenues for treating and preventing such pathologies is necessary and complicated by the complexity of interacting immune pathways in the gut, where effector and inflammatory immune cells are regulated by anti-inflammatory or regulatory cells. Here we present new advances in the development of the ENteric Immunity SImulator (ENISI), a simulator of GI immune mechanisms in response to resident commensal bacteria as well as invading pathogens and the effect on the development of intestinal lesions.
View Article and Find Full Text PDFBackground: Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples.
View Article and Find Full Text PDFBackground: We aim to determine the economic and social impact of typical interventions proposed by the public health officials and preventive behavioral changes adopted by the private citizens in the event of a "flu-like" epidemic.
Method: We apply an individual-based simulation model to the New River Valley area of Virginia for addressing this critical problem. The economic costs include not only the loss in productivity due to sickness but also the indirect cost incurred through disease avoidance and caring for dependents.
Network models of infectious disease epidemiology can potentially provide insight into how to tailor control strategies for specific regions, but only if the network adequately reflects the structure of the region's contact network. Typically, the network is produced by models that incorporate details about human interactions. Each detail added renders the models more complicated and more difficult to calibrate, but also more faithful to the actual contact network structure.
View Article and Find Full Text PDF