Understanding temporal accumulation of soybean above-ground biomass (AGB) has the potential to contribute to yield gains and the development of stress-resilient cultivars. Our main objectives were to develop a high-throughput phenotyping method to predict soybean AGB over time and to reveal its temporal quantitative genomic properties. A subset of the SoyNAM population ( = 383) was grown in multi-environment trials and destructive AGB measurements were collected along with multispectral and RGB imaging from 27 to 83 days after planting (DAP).
View Article and Find Full Text PDFBackground: In the early stages of plant breeding programs high-quality phenotypes are still a constraint to improve genetic gain. New field-based high-throughput phenotyping (HTP) platforms have the capacity to rapidly assess thousands of plots in a field with high spatial and temporal resolution, with the potential to measure secondary traits correlated to yield throughout the growing season. These secondary traits may be key to select more time and most efficiently soybean lines with high yield potential.
View Article and Find Full Text PDF