Publications by authors named "Keith A May"

The world population is getting older and, as a result, the number of older victims of crime is expected to increase. It is therefore essential to understand how ageing affects eyewitness identification, so procedures can be developed that enable victims of crime of all ages to provide evidence as accurately and reliably as possible. In criminal investigations, witnesses often provide a description of the perpetrator of the crime before later making an identification.

View Article and Find Full Text PDF
Article Synopsis
  • The article aims to outline essential factors for accurate and compliant billing practices in healthcare.
  • It discusses the complexities of billing related to new anesthesia techniques like liposomal bupivacaine and other regional blocks.
  • Understanding documentation and compliance is crucial for maintaining reimbursement rates and ensuring the effectiveness of acute pain services.
View Article and Find Full Text PDF

Stereoscopic, or "3D" vision in humans is mediated by neurons sensitive to the disparities in the positions of objects in the two eyes' views. A disparity-sensitive neuron is typically characterized by its responses to left- and right-eye monocular signals, S and S, respectively. However, it can alternatively be characterized by sensitivity to the sum of the two eyes' inputs, S = S + S, and the difference, S = S - S.

View Article and Find Full Text PDF

In previous work (May & Zhaoping, 2016; May, Zhaoping, & Hibbard, 2012), we have provided evidence that the visual system efficiently encodes binocular information using separately adaptable binocular summation and differencing channels. In that work, binocular test stimuli delivered different grating patterns to the two binocular channels; selective adaptation of one of the binocular channels made participants more likely to see the other channel's grating pattern. In the current study, we extend this paradigm to face perception.

View Article and Find Full Text PDF

The brain is bombarded with a continuous stream of sensory information, but biological limitations on the data-transmission rate require this information to be encoded very efficiently [1]. Li and Atick [2] proposed that the two eyes' signals are coded efficiently in the brain using mutually decorrelated binocular summation and differencing channels; when a channel is strongly stimulated by the visual input, such that sensory noise is negligible, the channel should undergo temporary desensitization (known as adaptation). To date, the evidence for this theory has been limited [3, 4], and the binocular differencing channel is missing from many models of binocular integration [5-10].

View Article and Find Full Text PDF

Intuition suggests that increased viewing time should allow for the accumulation of more visual information, but scant support for this idea has been found in studies of voluntary averaging, where observers are asked to make decisions based on perceived average size. In this paper we examine the dynamics of information accrual in an orientation-averaging task. With orientation (unlike intensive dimensions such as size), it is relatively safe to use an item's physical value as an approximation for its average perceived value.

View Article and Find Full Text PDF

The purpose of this article is to provide mathematical insights into the results of some Monte Carlo simulations published by Tolhurst and colleagues (Clatworthy, Chirimuuta, Lauritzen, & Tolhurst, 2003; Chirimuuta & Tolhurst, 2005a). In these simulations, the contrast of a visual stimulus was encoded by a model spiking neuron or a set of such neurons. The mean spike count of each neuron was given by a sigmoidal function of contrast, the Naka-Rushton function.

View Article and Find Full Text PDF

One of the major goals of sensory neuroscience is to understand how an organism's perceptual abilities relate to the underlying physiology. To this end, we derived equations to estimate the best possible psychophysical discrimination performance, given the properties of the neurons carrying the sensory code.We set up a generic sensory coding model with neurons characterized by their tuning function to the stimulus and the random process that generates spikes.

View Article and Find Full Text PDF

The ability of human participants to integrate fragmented stimulus elements into perceived coherent contours (amidst a field of distracter elements) has been intensively studied across a large number of contour element parameters, ranging from luminance contrast and chromaticity to motion and stereo. The evidence suggests that contour integration performance depends on the low-level Fourier properties of the stimuli. Thus, to understand contour integration, it would be advantageous to understand the properties of the low-level filters that the visual system uses to process contour stimuli.

View Article and Find Full Text PDF

Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ‘‘association field’’ proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour integration mechanisms.

View Article and Find Full Text PDF

In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function.

View Article and Find Full Text PDF

Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature, or defocus due to relative depth.

View Article and Find Full Text PDF

To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.

View Article and Find Full Text PDF

In Li and Atick's [1, 2] theory of efficient stereo coding, the two eyes' signals are transformed into uncorrelated binocular summation and difference signals, and gain control is applied to the summation and differencing channels to optimize their sensitivities. In natural vision, the optimal channel sensitivities vary from moment to moment, depending on the strengths of the summation and difference signals; these channels should therefore be separately adaptable, whereby a channel's sensitivity is reduced following overexposure to adaptation stimuli that selectively stimulate that channel. This predicts a remarkable effect of binocular adaptation on perceived direction of a dichoptic motion stimulus [3].

View Article and Find Full Text PDF

We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity.

View Article and Find Full Text PDF

It is easier to find a tilted bar among vertical bars than vice-versa, but this asymmetry can be abolished or reversed by surrounding the bars with a tilted frame. The frame effect is important because it challenges bottom-up models of saliency. We conducted two experiments to investigate the causes of this effect.

View Article and Find Full Text PDF

In this paper, we examine the mechanisms underlying the perceptual integration of two types of contour: snakes (composed of Gabor elements parallel to the path of the contour) and ladders (with elements perpendicular to the path). We varied the element separation and carrier wavelength. Increasing the element separation impaired detection of snakes but did not affect ladders; at high separations, snakes and ladders were closely matched in difficulty.

View Article and Find Full Text PDF

We studied the relationship between the decline in sensitivity that occurs with eccentricity for stimuli of different spatial scale defined by either luminance (LM) or contrast (CM) modulation. We show that the detectability of CM stimuli declines with eccentricity in a spatial frequency-dependent manner, and that the rate of sensitivity decline for CM stimuli is roughly that expected from their 1st order carriers, except, possibly, at finer scales. Using an equivalent noise paradigm, we investigated the possible reasons for why the foveal sensitivity for detecting LM and CM stimuli differs as well as the reason why the detectability of 1st order stimuli declines with eccentricity.

View Article and Find Full Text PDF