Understanding temporal accumulation of soybean above-ground biomass (AGB) has the potential to contribute to yield gains and the development of stress-resilient cultivars. Our main objectives were to develop a high-throughput phenotyping method to predict soybean AGB over time and to reveal its temporal quantitative genomic properties. A subset of the SoyNAM population ( = 383) was grown in multi-environment trials and destructive AGB measurements were collected along with multispectral and RGB imaging from 27 to 83 days after planting (DAP).
View Article and Find Full Text PDFBackground: In the early stages of plant breeding programs high-quality phenotypes are still a constraint to improve genetic gain. New field-based high-throughput phenotyping (HTP) platforms have the capacity to rapidly assess thousands of plots in a field with high spatial and temporal resolution, with the potential to measure secondary traits correlated to yield throughout the growing season. These secondary traits may be key to select more time and most efficiently soybean lines with high yield potential.
View Article and Find Full Text PDFDigital imagery can help to quantify seasonal changes in desirable crop phenotypes that can be treated as quantitative traits. Because limitations in precise and functional phenotyping restrain genetic improvement in the postgenomic era, imagery-based phenomics could become the next breakthrough to accelerate genetic gains in field crops. Whereas many phenomic studies focus on exploratory analysis of spectral data without obvious interpretative value, we used field images to directly measure soybean canopy development from phenological stage V2 to R5.
View Article and Find Full Text PDFIncreasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources.
View Article and Find Full Text PDF