The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported.
View Article and Find Full Text PDFPollination is the crucial initial step that brings together the male and female gametophytes, and occurs at the surface of the stigmatic papilla cell in . After pollen recognition, pollen hydration is initiated as a second critical step to activate desiccated mature pollen grains for germination, and thus water transport from pistil to pollen is essential for this process. In this study, we report a novel aquaporin-mediated water transport process in the papilla cell as a control mechanism for pollen hydration.
View Article and Find Full Text PDFIn various coastal areas of Japan, naturalized radish populations are observed. Radish is a cruciferous plant and exhibits self-incompatibility, involving a system controlled by a single locus with multiple S alleles. Although the S allele diversity of radish cultivars and wild radishes has been characterized, the S allele distribution in naturalized populations has not yet been analyzed in relation to the positions of the plants in situ.
View Article and Find Full Text PDFSelf-compatibility in represents the relatively recent disruption of ancestral obligate cross pollination, recognized as one of the prevalent evolutionary pathways in flowering plants, as noted by Darwin. Our previous study found that inversion of the male specificity gene (/) disrupted self-incompatibility, which was restored by overexpressing the with the reversed inversion. However, in has other mutations aside from the pivotal inversion, in both promoter and coding regions, with probable effects on transcriptional regulation.
View Article and Find Full Text PDFSelf-incompatibility (SI) is a sophisticated system for pollen selectivity to prevent pollination by genetically identical pollen. In Brassica, it is genetically controlled by a single, highly polymorphic S-locus, and the male and female S-determinant factors have been identified as S-locus protein 11 (SP11)/S-locus cysteine-rich protein (SCR) and S-locus receptor kinase (SRK), respectively. However, the overall molecular system and identity of factors in the downstream cascade of the SI reaction remain unclear.
View Article and Find Full Text PDFStigmatic papillae develop at the apex of the gynoecium and play an important role as a site of pollination. The papillae in Brassicaceae are of the dry and unicellular type, and more than 15,000 genes are expressed in the papillae; however, the molecular and physiological mechanisms of their development remain unknown. We found that the papillae in Arabidopsis thaliana change their length in response to altered ambient humidity: papillae of flowers incubated under high humidity elongated more than those under normal humidity conditions.
View Article and Find Full Text PDFIn plants, cell-cell recognition is a crucial step in the selection of optimal pairs of gametes to achieve successful propagation of progeny. Flowering plants have evolved various genetic mechanisms, mediated by cell-cell recognition, to enable their pistils to reject self-pollen, thus preventing inbreeding and the consequent reduced fitness of progeny (self-incompatibility, SI), and to reject foreign pollen from other species, thus maintaining species identity (interspecific incompatibility). In the genus Brassica, the SI system is regulated by an S-haplotype-specific interaction between a stigma-expressed female receptor (S receptor kinase, SRK) and a tapetum cell-expressed male ligand (S locus protein 11, SP11), encoded by their respective polymorphic genes at the S locus.
View Article and Find Full Text PDFIn quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes.
View Article and Find Full Text PDFPlants subjected to abiotic stress can regulate gene expression post-transcriptionally by means of small RNAs such as microRNAs. Cool-temperature stress causes abnormal tapetum hypertrophy in rice anthers, leading to pollen sterility. As a first step toward understanding the molecular mechanisms of cool tolerance in developing anthers of rice, we report here a comprehensive comparative analysis of microRNAs between cool-sensitive Sasanishiki and cool-tolerant Hitomebore cultivars.
View Article and Find Full Text PDFPollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte.
View Article and Find Full Text PDFSelf-incompatibility (SI) of the Brassicaceae family can be overcome by CO2 gas treatment. This method has been used for decades as an effective means to obtain a large amount of inbred seeds which can then be used for F1 hybrid seed production; however, the molecular mechanism by which CO2 alters the SI pathway has not been elucidated. In this study, to obtain new insights into the mechanism of CO2-induced SI breakdown, the focus was on two inbred lines of Brassica rapa (syn.
View Article and Find Full Text PDFPollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination.
View Article and Find Full Text PDFBackground And Aims: Pollination is an important process in the life cycle of plants and is the first step in bringing together the male and female gametophytes for plant reproduction. While pollination has been studied for many years, accurate knowledge of the morphological aspects of this process is still far from complete. This study therefore focuses on a morphological characterization of pollination, using time-series image analysis of self- and cross-pollinations in Brassica rapa.
View Article and Find Full Text PDFClubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown.
View Article and Find Full Text PDFIn plant reproduction, pollination is the initial key process in bringing together the male and female gametophytes. When a pollen grain lands on the surface of the stigma, information is exchanged between the pollen and stigmatic cell to determine whether the pollen grain will be accepted or rejected. If it is accepted, the stigmatic papilla cell supplies water and other resources to the pollen for germination and pollen tube elongation.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
October 2013
Self-incompatibility (SI) is defined as the inability to produce zygotes after self-pollination in a fertile hermaphrodite plant, which has stamens and pistils in the same flower. This structural organization of the hermaphrodite flower increases the risk of self-pollination, leading to low genetic diversity. To avoid this problem plants have established several pollination systems, among which the most elegant system is surely SI.
View Article and Find Full Text PDFCo-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis.
View Article and Find Full Text PDFIn the last decade, a variety of innovations of emerging technologies in science have been accomplished. Advanced research environment in plant science has made it possible to obtain whole genome sequence in plant species. But now we recognize this by itself is not sufficient to understand the overall biological significance.
View Article and Find Full Text PDFSimilarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs.
View Article and Find Full Text PDFCool temperature conditions are known to lead to pollen sterility in rice. Pollen sterility is an agriculturally important phenomenon because it imparts a large influence directly on rice yield. However, cool temperature stress tolerance varies among rice cultivars and avoidance of cool temperature stress is difficult by practical method of agriculture.
View Article and Find Full Text PDFSelf-incompatibility (SI) in Brassicaceae is sporophytically controlled by a single S-locus with multi allelic variety. The male S determinant, SP11/SCR (S-locus protein 11/S-locus cysteine-rich protein), is a small cysteine-rich protein, and the female S determinant, SRK (S-locus receptor kinase), functions as a receptor for SP11 at the surface of stigma papilla cells. Although a few of the following downstream factors in the SP11-SRK signaling cascade have been identified, a comprehensive understanding of the SI mechanism still remains unexplained in Brassicaceae.
View Article and Find Full Text PDFUDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the metabolism of UDP-glucose, a precursor for the synthesis of carbohydrate cell wall components, such as cellulose and callose. The Arabidopsis thaliana genome contains two putative genes encoding UGPase, AtUGP1 and AtUGP2. These genes are expressed in all organs.
View Article and Find Full Text PDFEver since Darwin's pioneering research, the evolution of self-fertilisation (selfing) has been regarded as one of the most prevalent evolutionary transitions in flowering plants. A major mechanism to prevent selfing is the self-incompatibility (SI) recognition system, which consists of male and female specificity genes at the S-locus and SI modifier genes. Under conditions that favour selfing, mutations disabling the male recognition component are predicted to enjoy a relative advantage over those disabling the female component, because male mutations would increase through both pollen and seeds whereas female mutations would increase only through seeds.
View Article and Find Full Text PDF