Publications by authors named "Keisuke Aratsu"

The self-assembly processes of PdL coordination prisms consisting of -protected Pd(II) complexes and porphyrin-based tetratopic ligands with four 3-pyridyl or 4-pyridyl groups (L) were investigated by experimental and numerical methods, QASAP (quantitative analysis of self-assembly process) and NASAP (numerical analysis of self-assembly process), respectively. It was found that contrary to common intuition macrocyclization takes place faster than the bridging reaction in the prism assembly and that the bridging reaction occurring before the macrocyclization tends to produce kinetically trapped species. A numerical simulation demonstrates that the relative magnitude of the rate constants between the macrocyclization and the bridging reaction is the key factor that determines whether the self-assembly leads to the thermodynamically most stable prism or to kinetically trapped species.

View Article and Find Full Text PDF

Experimental and theoretical investigations of the self-assembly process of a Pd(II) coordination ML square-based pyramid (SP) were conducted. It was found that the probable self-assembly pathway, in which the dimerization of ML with two M leads to SP, expected from the connectivity of the building blocks is not a major self-assembly pathway to the ML SP. Whether the ML SP is assembled or ML is trapped is determined by an inter- or intramolecular reaction in a chain-like MLX, where X is a leaving ligand.

View Article and Find Full Text PDF

An aromatic oligomer micelle, featuring both high stability and high uptake ability, was quantitatively formed in water from amphiphilic oligomers, composed of three bent polyaromatic amphiphiles connected alternately by two hydrophilic chains. The well-defined micelle, with a diameter of ca. 2 nm, remains intact even under highly diluted conditions (ca.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the paper has been published.
  • The amendment can be accessed through a link provided at the top of the original paper.
  • Readers should check the link for updated information related to the paper.
View Article and Find Full Text PDF

Mechanical interlocking of molecules (catenation) is a nontrivial challenge in modern synthetic chemistry and materials science. One strategy to achieve catenation is the design of pre-annular molecules that are capable of both efficient cyclization and of pre-organizing another precursor to engage in subsequent interlocking. This task is particularly difficult when the annular target is composed of a large ensemble of molecules, that is, when it is a supramolecular assembly.

View Article and Find Full Text PDF

Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes.

View Article and Find Full Text PDF

Transformation of metastable supramolecular stacks of hydrogen-bonded rosettes composed of an ester-containing barbiturated naphthalene into crystalline nanosheets occurs through the rearrangement of hydrogen-bonding patterns. The involvement of the ester group in the crystalline hydrogen-bonded pattern is demonstrated, guiding us to a new molecular design that can afford supramolecular polymorphs with soft and hard molecular packing.

View Article and Find Full Text PDF

A unique narcissistic self-sorting system is composed of two structurally similar mono- and bisnaphthalene-based supramolecular monomers. Upon cooling the pure mono- and bisnaphthalene monomers in a nonpolar solvent, toroidal and helicoidally elongated supramolecular polymers were obtained, respectively, through the nucleation-elongation mechanism. When a 1 : 1 mixture of these monomers was similarly cooled, we obtained self-sorted mixtures of smaller and larger toroidal supramolecular polymers with diameters of 15 and 26 nm, respectively.

View Article and Find Full Text PDF

Kinetically formed metastable molecular assemblies have attracted increasing interest especially in the field of supramolecular polymers. In most cases, metastable assemblies are ensemblies of aggregates based on the same supramolecular motif but with different lengths or sizes, and therefore their kinetic stabilities are experimentally indistinguishable. Herein, we demonstrate a topological effect on kinetic stabilities in a complex mixture of metastable supramolecular polymers.

View Article and Find Full Text PDF

Topological features of one-dimensional macromolecular chains govern the properties and functionality of natural and synthetic polymers. To address this issue in supramolecular polymers, we synthesized two topologically distinct supramolecular polymers with intrinsic curvature, circular and helically folded nanofibers, from azobenzene-functionalized supramolecular rosettes. When a mixture of circular and helically folded nanofibers was exposed to UV light, selective unfolding of the latter open-ended supramolecular polymers was observed as a result of the curvature-impairing internal force produced by the trans-to-cis photoisomerization of the azobenzene.

View Article and Find Full Text PDF

Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization.

View Article and Find Full Text PDF

Hydrogen-bonded supermacrocycles (rosettes) are attractive disk-shaped noncovalent synthons for extended functional columnar nanoassemblies. They can serve not only as noncovalent monomer units for supramolecular polymers and discrete oligomers in a dilute solution but also as constituent entities for soft matters such as gels and lyotropic/thermotropic liquid crystals. However, what are the merits of using supramolecular rosettes instead of using expanded π-conjugated covalent molecules? This review covers the self-assembly of photochemically and electrochemically active π-conjugated molecules through the formation of supramolecular rosettes via directional complementary multiple hydrogen-bonding interactions.

View Article and Find Full Text PDF

Unlike classical covalent polymers, one-dimensionally (1D) elongated supramolecular polymers (SPs) can be encoded with high degrees of internal order by the cooperative aggregation of molecular subunits, which endows these SPs with extraordinary properties and functions. However, this internal order has not yet been exploited to generate and dynamically control well-defined higher-order (secondary) conformations of the SP backbone, which may induce functionality that is comparable to protein folding/unfolding. Herein, we report light-induced conformational changes of SPs based on the 1D exotic stacking of hydrogen-bonded azobenzene hexamers.

View Article and Find Full Text PDF

Molecular self-assembly primarily occurs in solution. To better understand this process, techniques capable of probing the solvated state are consequently required. Small-angle scattering (SAS) has a proven ability to detect and characterize solutions, but it is rarely applied to more complex assembly shapes.

View Article and Find Full Text PDF

The self-assembly of two regioisomeric hydrogen-bonding naphthalenes was studied in mixed states in different polarity solvents. The regioisomers co-assemble to form heteromeric rosettes in chloroform. Upon injecting this solution into methylcyclohexane the heteromeric rosettes kinetically form amorphous aggregates, which over time differentiate into thermodynamically stable distinct nanostructures through self-sorting.

View Article and Find Full Text PDF