Ferrihydrite is omnipresent in nature, and its adsorption of As(III/V) decides the migration of arsenic. Although As(III) is commonly recognized as the more mobile species of inorganic arsenic, it sometimes exhibits less mobility in ferrihydrite systems, which calls for further insights. In this study, we elucidated the adsorption behavior and mechanisms of As(III/V) on ferrihydrite under different loading levels (molar ratio As/Fe = 0-0.
View Article and Find Full Text PDFIn this study, we investigated improving the performance of a layered double hydroxide (LDH) for the adsorption of As(III) and As(V) by controlling the morphology of LDH crystals. The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid (SA) as a morphological control agent. Doping the LDH crystals with carboxylate ions (RCOO) derived from SA caused the crystals to develop in a radial direction.
View Article and Find Full Text PDFFerrous sulfate (FeSO) combined with acid pretreatment is usually employed to remediate contaminated soils containing Cr(VI). However, the long-term efficiency of this stabilization method is important for its sustainability. In this study, a gradient temperature-elevating exposure test was employed to investigate the stability of Cr in FeSO-remediated soil when exposed to elevated temperatures (40 °C, 120 °C, and 500 °C), possibly caused by hot weather and/or wildfires.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2023
Cadmium (Cd), as a type of heavy metal, can increase the incidence of many diseases, even in low concentrations. In this study, tobermorite was hydrothermally synthesized and then applied to adsorb Cd from an aqueous solution. The physicochemical characteristics of the synthesized tobermorite were detected, and the results indicated that the well-crystallized tobermorite had a lot of mesopores and a large specific surface area of 140.
View Article and Find Full Text PDFA passive treatment process using sulfate-reducing bacteria (SRB) is known to be effective in removing heavy metals from acid mine drainage (AMD), though there has been little discussion of the mechanism involved to date. In this work, a sulfate-reducing column test was carried out using supplementary ethanol as an electron donor for microorganisms, and the reaction mechanism was examined using geochemical modeling and X-ray absorption fine structure (XAFS) analysis. The results showed that Cu was readily removed from the AMD on the top surface of the column (0-0.
View Article and Find Full Text PDF