The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model.
View Article and Find Full Text PDFThe mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes.
View Article and Find Full Text PDFMelanopsin (OPN4) is a photo-pigment found in a small subset of intrinsically photosensitive ganglion cells (ipRGCs) of the mammalian retina. These cells play a role in synchronizing the central circadian pacemaker to the astronomical day by conveying information about ambient light to the hypothalamic suprachiasmatic nucleus, the site of the master clock. We evaluated the effect of a heat stimulus (39.
View Article and Find Full Text PDFHere we report, for the first time, the differential cellular distribution of two melanopsins (Opn4m1 and Opn4m2) and the effects of GR agonist, dexamethasone, on the expression of these opsins and clock genes, in the photosensitive ZEM-2S embryonic cells. Immunopositive labeling for Opn4m1 was detected in the cell membrane whereas Opn4m2 labeling shows nuclear localization, which did not change in response to light. , , , and presented an oscillatory profile of expression in LD condition.
View Article and Find Full Text PDF