Postprandial hyperglycemia is a known risk factor for the development of several health disorders, including type 2 diabetes, obesity and cardiovascular disease. This study aimed to investigate the acute effect of Undaria pinnatifida (Wakame), a discriminative constituent of the Japanese diet, on postprandial blood glucose and insulin levels. The study was conducted using a crossover method among 26 subjects.
View Article and Find Full Text PDFScope: Wakame is an edible seaweed that is a common constituent in the Japanese diet. Previous studies showed that wakame consumption is associated with the prevention of metabolic syndrome, but the molecular mechanisms underlying the protective effects are poorly understood.
Methods And Results: To determine if the expression of hepatic genes is affected by ingestion of the brown seaweed Undaria pinnatifida (wakame), rats were fed a diet containing 0, 0.
It is well known that ultraviolet B irradiation leads to dermal inflammation. In this study, we found that Mekabu fucoidan suppressed edema, decreased the thickness of the prickle cell layer, and decreased matrix metalloproteinase 1 in the skin of mice irradiated with ultraviolet B. Moreover, we found that the mean level of interferon gamma of Mekabu fucoidan-treated, ultraviolet B-irradiated mice (approximately 2.
View Article and Find Full Text PDFFucoidan from the sporophyll (Mekabu) of brown seaweed Undaria pinnatifida (wakame) is interesting due to its various biological activities. Mekabu fucoidan (Mw ∼ 9 kDa) of this study (MF) was previously isolated and characterized by chemical and separation methods including GPC and methylation analysis (Lee, Hayashi, Hashimoto, Nakano, & Hayashi, 2004). It was found that this fucoidan composed of partially sulphated (DS ∼ 0.
View Article and Find Full Text PDFBax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppresser in animals, yeast, and plants. In this study, yeast strains carrying single-gene deletions were screened for factors related to cell death suppression by Arabidopsis BI-1 (AtBI-1). Our screen identified mutants that failed to survive Bax-induced lethality even with AtBI-1 coexpression (Bax suppressor).
View Article and Find Full Text PDFBackground And Aims: Recent reports have described dramatic alterations in mitochondrial morphology during metazoan apoptosis. A dynamin-related protein (DRP) associated with mitochondrial outer membrane fission is known to be involved in the regulation of apoptosis. This study analysed the relationship between mitochondrial fission and regulation of plant cell death.
View Article and Find Full Text PDFPlant Cell Rep
September 2005
Mammalian Bax is known to cause cell death when expressed in plants. We examined transgenic plants expressing both Bax and organelle-targeted green fluorescent protein to determine the cellular changes that occur during Bax-induced cell death. The mitochondria changed morphologically from being bacilli-shaped to being round, eventually becoming swollen.
View Article and Find Full Text PDF