The major components of tea leaves and their infusions were analyzed for various types of green tea available in Japan in 2022. Almost all the green teas used were from the first crop, known for their high amino acid content. The amino acids theanine and arginine in green tea have been shown to reduce stress.
View Article and Find Full Text PDFTheanine, an amino acid unique to tea leaves, has been reported to exhibit stress-relieving effects. However, the stress-relieving effects of theanine (T) are greatly inhibited by caffeine (C) and epigallocatechin gallate (E), the main components of green tea, while being enhanced by arginine (A). Animal and clinical studies using matcha tea have shown that it can alleviate stress if the molar ratio of C and E against T and A (CE/TA) is less than 2.
View Article and Find Full Text PDFSeveral studies have reported the effects of the consumption of various mushroom species on the testes in animal experimental models. Mushrooms, including enokitake mushrooms (), and vegetables contain adenosine may affect testosterone production. Here, we aimed to elucidate the effects of enokitake and its active component, adenosine, on testosterone production in primary cultures of testicular cells in vivo using mice models and in vitro.
View Article and Find Full Text PDFGroup rearing is a common housing condition, but group-housed older mice show increased adrenal hypertrophy, a marker of stress. However, the ingestion of theanine, an amino acid unique to tea leaves, suppressed stress. We aimed to elucidate the mechanism of theanine's stress-reducing effects using group-reared older mice.
View Article and Find Full Text PDFEpidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis.
View Article and Find Full Text PDFBeing in a prolonged depressed state increases the risk of developing depression. To investigate whether green tea intake is effective in improving depression-like moods, we used an experimental animal model of depression with lipopolysaccharide (LPS) and clarified the effects of green tea on the biological stress response and inflammation in the brain. Regarding the stress reduction effect of green tea, we found that the sum of caffeine (C) and epigallocatechin gallate (E) relative to the sum of theanine (T) and arginine (A), the major components of green tea, or the CE/TA ratio, is important.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
July 2022
Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
October 2021
Epidemiological studies have demonstrated that the intake of green tea is effective in reducing the risk of dementia. The most important component of green tea is epigallocatechin gallate (EGCG). Both EGCG and epigallocatechin (EGC) have been suggested to cross the blood-brain barrier to reach the brain parenchyma, but EGCG has been found to be more effective than EGC in promoting neuronal differentiation.
View Article and Find Full Text PDFBy comprehensively measuring changes in metabolites in the hippocampus of stress-loaded mice, we investigated the reasons for stress vulnerability and the effect of theanine, i.e., an abundant amino acid in tea leaves, on the metabolism.
View Article and Find Full Text PDFSenescence-accelerated mouse prone 10 (SAMP10) exhibits cerebral atrophy and depression-like behavior. A line of SAMP10 with spontaneous mutation in the gene encoding the sodium-glucose cotransporter (SGLT) 2 was named SAMP10/TaSlc- (SAMP10-ΔSglt2) and was identified as a renal diabetes model. In contrast, a line of SAMP10 with no mutation in SGLT2 (SAMP10/TaIdrSlc, SAMP10(+)) was recently established under a specific pathogen-free condition.
View Article and Find Full Text PDFThe young leaves of green tea become lighter in color than usual when protected from sunlight by a shading net for about two weeks while growing. These leaves are called "shaded white leaf tea" or SWLT. In the eluate of SWLT, the amount of amino acids (361 mg/L) was significantly higher than that in regular tea (53.
View Article and Find Full Text PDFSenescence-accelerated mouse prone 10 (SAMP10) mice, after ingesting green tea catechins (GT-catechin, 60 mg/kg), were found to have suppressed aging-related decline in brain function. The dose dependence of brain function on GT-catechin indicated that intake of 1 mg/kg or more suppressed cognitive decline and a shortened lifespan. Mice that ingested 1 mg/kg GT-catechin had the longest median survival, but the dose was less effective at suppressing cognitive decline.
View Article and Find Full Text PDFSesame lignans, which are biologically active compounds present in sesame seeds and oil, are known to have neuroprotective effects in several models of brain dysfunction. However, the effects of sesame lignans on age-related brain dysfunction are not clear and were thus investigated in the present study using a senescence-accelerated mouse (SAMP10). Two-month-old male SAMP10 mice were administrated a basal diet with 0% or 0.
View Article and Find Full Text PDF