Publications by authors named "Keiko Tsuchida"

The aims of this study were to investigate the impact of caloric restriction (CR) on cardiac telomere biology in an animal model of diabetes and to examine the signal transduction involved in cell senescence as well as cardiac function. Male 8-week-old Otsuka Long-Evans Tokushima fatty (OLETF) diabetic rats were divided into two groups: a group fed ad libitum (OLETF-AL) and a group fed with CR (OLETF-CR: 30% energy reduction). Long-Evans Tokushima Otsuka (LETO) non-diabetic rats were used as controls.

View Article and Find Full Text PDF

TNF-alpha impairs endothelial cell growth and angiogenesis. The anti-angiogenic effects of TNF-alpha have mainly been explained by its modulating vascular endothelial growth factor (VEGF)-specific angiogenic pathway. Hepatocyte growth factor (HGF) also promotes the growth of vascular endothelial cells and the development of new blood vessels through interaction with its specific receptor, c-met.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) receptor-2 (KDR/flk-1) has a tyrosine kinase domain, and once activated, induces the autophosphorylation of the tyrosine residues, which is essential for angiogenesis. SHP-1, a cytoplasmic protein tyrosine phosphatase, plays a negative regulatory role in signal transduction pathways by dephosphorylation of the receptors to which it binds. Thus, therapeutic angiogenesis designed to inhibit expression of SHP-1 would be beneficial in hindlimb ischemia.

View Article and Find Full Text PDF

The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1) plays a key role in apoptosis and decreases phosphorylation of Akt. Apoptosis of cardiomyocytes is thought to contribute to the increased area of acute myocardial infarction (AMI), and Akt activation exerts a powerful cardioprotective effect after ischemia. Thus, a therapeutic strategy designed to inhibit expression of SHP-1 would be beneficial in AMI.

View Article and Find Full Text PDF

Apoptosis in the myocardium is linked to ischemia/reperfusion injury, and TNF-alpha induces apoptosis in cardiomyocytes. A significant amount of TNF-alpha is detected after ischemia and reperfusion. Soluble TNF-alpha receptor 1 (sTNFR1) is an extracellular domain of TNF-alpha receptor 1 and is an antagonist to TNF-alpha.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) receptor-2 (KDR/flk-1) has a tyrosine kinase domain and, once activated, induces the autophosphorylation of the tyrosine residues. The phosphorylated KDR/flk-1 can be a substrate for intracellular protein tyrosine phosphatases (PTPs). In the present study, we have examined whether the PTP inhibitor sodium orthovanadate (SOV) activates KDR/flk-1 and accelerates angiogenesis in a rat model of hindlimb ischemia.

View Article and Find Full Text PDF

Increased circulating and cardiac TNF-alpha levels during myocardial ischemia have been found in both experimental animals and patients with ischemic heart disease and advanced heart failure. Soluble TNF-alpha receptor 1 (sTNFR1) is an antagonist to TNF-alpha. In the present study, we examined whether sTNFR1 improves cardiac function in rats after myocardial infarction.

View Article and Find Full Text PDF

Apoptosis-inducing agents have been reported to cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1) in endothelial cells (EC). Oxidized LDL (oxLDL) has also been known to induce apoptosis of EC and to inhibit proliferation of EC. In the present study, we show that oxLDL also causes shedding of TNFR1 in EC and that EC transfected with soluble TNFR1 (sTNFR1 ), which is an extracellular domain of TNFR1, can antagonize the toxicity induced by oxLDL.

View Article and Find Full Text PDF

Background: In a pathological setting, tumor necrosis factor (TNF)-alpha inhibits the proliferative response of endothelial cells through inactivation of receptors for vascular endothelial growth factor (VEGF). Soluble TNF-alpha receptor 1 (sTNFR1) is an extracellular domain of TNFR1 and an antagonist to TNF-alpha. In the present study, we examined the effect of sTNFR1 expression plasmid on receptor for VEGF (KDR/flk-1) and angiogenesis in a rat model of hindlimb ischemia.

View Article and Find Full Text PDF

Apoptosis is the major independent form of cardiomyocyte cell death in acute myocardial infarction (AMI). TNF-alpha release early in the course of AMI contributes to myocardial injury, and TNF-alpha induces apoptosis in cardiomyocytes. Soluble TNF-alpha receptor 1 (sTNFR1) is an antagonist to TNF-alpha.

View Article and Find Full Text PDF

Calcium channel blockade has been shown to inhibit experimental atherosclerosis, and early clinical trials suggest that it also reduces atherosclerosis in humans. However, the mechanisms underlying the direct protective effect of calcium channel blockade on endothelial cell injury are not fully understood. The apoptosis of endothelial cells induced by oxidized low-density lipoproteins (oxLDL) may provide a mechanistic clue to the "response-to-injury" hypothesis of atherogenesis.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) can overcome a potential anti-angiogenic effect of TNF-alpha by inhibiting endothelial apoptosis induced by this cytokine. Soluble TNF-alpha receptor I (sTNFRI) is an extracellular domain of TNFRI and antagonizes the activity of TNF-alpha. Here we report that sTNFRI is able to stimulate the growth of endothelial cells not by antagonizing TNF-alpha.

View Article and Find Full Text PDF