Evaluating the familiarity of faces is critical for social animals as it is the basis of individual recognition. In the present study, we examined how face familiarity is reflected in neural activities in our closest living relative, the chimpanzee. Skin-surface event-related brain potentials (ERPs) were measured while a fully awake chimpanzee observed photographs of familiar and unfamiliar chimpanzee faces (Experiment 1) and human faces (Experiment 2).
View Article and Find Full Text PDFAdvancement of non-invasive brain imaging techniques has allowed us to examine details of neural activities involved in affective processing in humans; however, no comparative data are available for chimpanzees, the closest living relatives of humans. In the present study, we measured event-related brain potentials in a fully awake adult chimpanzee as she looked at affective and neutral pictures. The results revealed a differential brain potential appearing 210 ms after presentation of an affective picture, a pattern similar to that in humans.
View Article and Find Full Text PDFThe sound of one's own name is one of the most salient auditory environmental stimuli. Several studies of human brain potentials have revealed some characteristic waveforms when we hear our own names. In a recent work, we investigated event-related potentials (ERPs) in a female chimpanzee and demonstrated that the ERP pattern generated when she heard her own name differed from that generated when she heard other sounds.
View Article and Find Full Text PDFResearchers have argued that the process of human birth is unique among primates and mammals in that the infant emerges with its face oriented in the opposite direction from its mother (occiput anterior) and head rotation occurs in the birth canal. However, this notion of human uniqueness has not been substantiated, because there are few comparative studies of birth in non-human primates. This paper reports the mechanism of birth in chimpanzees (Pan troglodytes) based on the first clear, close-up video recordings of three chimpanzee births in captivity.
View Article and Find Full Text PDFBackground: The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking.
Methodology/principal Findings: In the present report, skin-surface event-related brain potentials (ERPs) were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments.
This paper reports on the use of an eye-tracking technique to examine how chimpanzees look at facial photographs of conspecifics. Six chimpanzees viewed a sequence of pictures presented on a monitor while their eye movements were measured by an eye tracker. The pictures presented conspecific faces with open or closed eyes in an upright or inverted orientation in a frame.
View Article and Find Full Text PDFThe brain activity of a fully awake chimpanzee being presented with her name was investigated. Event-related potentials (ERPs) were measured for each of the following auditory stimuli: the vocal sound of the subject's own name (SON), the vocal sound of a familiar name of another group member, the vocal sound of an unfamiliar name and a non-vocal sound. Some differences in ERP waveforms were detected between kinds of stimuli at latencies at which P3 and Nc components are typically observed in humans.
View Article and Find Full Text PDFBackground: For decades, the chimpanzee, phylogenetically closest to humans, has been analyzed intensively in comparative cognitive studies. Other than the accumulation of behavioral data, the neural basis for cognitive processing in the chimpanzee remains to be clarified. To increase our knowledge on the evolutionary and neural basis of human cognition, comparative neurophysiological studies exploring endogenous neural activities in the awake state are needed.
View Article and Find Full Text PDF