Publications by authors named "Keiko Hirayama"

Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry.

View Article and Find Full Text PDF

Many cost-benefit decisions reduce to simple choices between approach or avoidance (or active disregard) to salient stimuli. Physiologically, critical factors in such decisions are modulators of the homeostatic neural networks that bias decision processes from moment to moment. For the predatory sea-slug Pleurobranchaea, serotonin (5-HT) is an intrinsic modulatory promoter of general arousal and feeding.

View Article and Find Full Text PDF

A simple circuit for cost-benefit decision derived from behavioral and neural studies of the predatory sea-slug Pleurobranchaea may closely resemble that upon which the more complex valuation and decision processes of the social vertebrates are built. The neuronal natures of the pathways in the connectionist model comprise classic central pattern generators, bipolar switch mechanisms, and neuromodulatory state regulation. Marked potential exists for exploring more complex neuroeconomic behavior by appending appropriate circuitry in simulo.

View Article and Find Full Text PDF

Concrete examples of computation and implementation of cost/benefit decisions at the level of neuronal circuits are largely lacking. Such decisions are based on appetitive state, which is the integration of sensation, internal state, and memory. Value-based decisions are accessible in neuronal circuitry of simple systems.

View Article and Find Full Text PDF