Publications by authors named "Keiji Sakaki"

We investigated butanol recovery by pervaporation separation, using a silicalite-1 membrane, from batch cultures of butanol-producing Clostridium beijerinckii SBP2 grown on sweet sorghum juice as a fermentation medium. The pervaporation system yielded 73% (w/v) butanol from intact feed cultures containing 1% (w/v) butanol, and had a butanol permeation flux of 11 g m(-2) h(-1). Upon neutralization and activated charcoal treatment of the feed cultures, butanol yield and total flux increased to 82% (w/v) and 40 g m(-2) h(-1), respectively.

View Article and Find Full Text PDF

Gluconobacter oxydans IFO12528 is able to produce glyceric acid (GA) from glycerol through the action of a membrane-bound alcohol dehydrogenase (mADH), which is required for GA production. To determine whether membrane-bound aldehyde dehydrogenase (mALDH) also plays a role in GA production in G. oxydans, we constructed an aldH-disrupted mutant of G.

View Article and Find Full Text PDF

Glyceric acid (GA) is one of the most promising functional hydroxyl acids, and it is abundantly obtained from glycerol by a bioprocess using acetic acid bacteria. In this study, several monoacyl GAs were synthesized by esterification of GA and saturated fatty acyl chlorides (C12, C14, C16, and C18), forming a new class of bio-based surfactants. By the present method, a mixture of two isomers, namely 2-O-acyl and 3-O-acyl GAs, was produced, in which the 2-O-acyl derivatives were obtained as a major product.

View Article and Find Full Text PDF

2,3-O-Dipalmitoyl-D-glyceric acid (PA2-DGA) was synthesized from D-glyceric acid calcium salt and palmitoyl chloride with improved yield. Direct condensation between the D-glyceric acid calcium salt and palmitoyl chloride produced PA2-DGA with a yield of <10%, whereas stepwise synthesis yielded this compound at up to 24% of overall yield. PA2-DGA was then subjected to a cytotoxic test using normal human dermal fibroblasts and primary normal human dermal microvascular endothelial cells.

View Article and Find Full Text PDF

A polytetrafluoroethylene (PTFE) membrane was used in membrane-assisted extractive (MAE) fermentation of acetone-butanol-ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. The growth inhibition effects of 1-dodecanol, which has a high partition coefficient for butanol, can be prevented by employing 1-dodecanol as an extractant when using a PTFE membrane. Compared to conventional fermentation, MAE-ABE fermentation with 1-dodecanol decreased butanol inhibition and increased glucose consumption from 59.

View Article and Find Full Text PDF

Background: In the normal process of bioethanol production, biomass is transported to integrated large factories for degradation to sugar, fermentation, and recovery of ethanol by distillation. Biomass nutrient loss occurs during preservation and degradation. Our aim was to develop a decentralized ethanol production system appropriate for farm or co-operative level production that uses a solid-state fermentation method for producing bio-ethanol from whole crops, provides cattle feed, and produces no wastes.

View Article and Find Full Text PDF

D-Glyceric acid (D-GA) calcium has been reported to accelerate ethanol oxidation in vivo in rats (Eriksson et al., Metabolism, 56, 895-898 (2007)). However, no other reports have shown that D-GA can reduce the harmful effects of ethanol.

View Article and Find Full Text PDF

Acetobacter tropicalis NBRC16470 can produce highly enantiomerically pure D-glyceric acid (D-GA; >99 % enantiomeric excess) from glycerol. To investigate whether membrane-bound alcohol dehydrogenase (mADH) is involved in GA production in A. tropicalis, we amplified part of the gene encoding mADH subunit I (adhA) using polymerase chain reaction and constructed an adhA-disrupted mutant of A.

View Article and Find Full Text PDF

A novel derivative of glyceric acid (GA), dilinoleoyl-D-glyceric acid (LA₂-DGA), was synthesized from D-GA calcium salt and linoleoyl chloride and evaluated for cytotoxicity. The D-GA calcium salt was first reacted with 4-methoxybezylchloride, and the resulting compound was esterified with linoleoyl chloride. This reaction was followed by hydrolysis of the 4-methoxybenzyl moiety, yielding LA₂-DGA.

View Article and Find Full Text PDF

Utilization of excess glycerol supplies derived from the burgeoning biodiesel industry has recently become very important. Glyceric acid (GA) is one of the most promising glycerol derivatives, and it is abundantly obtained from glycerol by a bioprocess using acetic acid bacteria. In this study, a novel branched-type poly(lactic acid) (PLA) was synthesized by polycondensation of lactide in the presence of GA.

View Article and Find Full Text PDF

Previously, Lešová et al. reported the isolation and identification of metabolite OR-1, showing antitrypsin activity, produced during fermentation by Penicillium funiculosum. The structure of OR-1 was a mixture of glyceric acid (GA), esterified with C(14)-C(18) fatty acids, and oleic acid (C18:1) as the most predominant fatty acid (Folia Microbiol.

View Article and Find Full Text PDF

To prevent dihydroxyacetone (DHA) by-production during glyceric acid (GA) production from glycerol using Gluconobacter frateurii, we used a G. frateurii THD32 mutant, ΔsldA, in which the glycerol dehydrogenase subunit-encoding gene (sldA) was disrupted, but ΔsldA grew much more slowly than the wild type, growth starting after a lag of 3 d under the same culture conditions. The addition of 1% w/v D-sorbitol to the medium improved both the growth and the GA productivity of the mutant, and ΔsldA produced 89.

View Article and Find Full Text PDF

The aim of this research was the application of a two-stage electrodialysis (ED) method for glyceric acid (GA) recovery from fermentation broth. First, by desalting ED, glycerate solutions (counterpart is Na+) were concentrated using ion-exchange membranes, and the glycerate recovery and energy consumption became more efficient with increasing the initial glycerate concentration (30 to 130 g/l). Second, by water-splitting ED, the concentrated glycerate was electroconverted to GA using bipolar membranes.

View Article and Find Full Text PDF

Dihydroxyacetone (DHA) production from glycerol by Gluconobacter oxydans is an industrial form of fermentation, but some problems exist related to microbial DHA production. For example, glycerol inhibits DHA production and affects its biological activity. G.

View Article and Find Full Text PDF

A yeast strain, 25N-2B, that produces D-arabitol from glycerol, was identified as Candida parapsilosis based on phylogenetic, morphological, physiological, and biochemical analyses. It produced 32.2 g/L D-arabitol from 170 g/L glycerol in a jar fermentor.

View Article and Find Full Text PDF

Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly.

View Article and Find Full Text PDF

Gluconobacter sp. NBRC3259 converted glycerol to glyceric acid (GA). The enantiomeric composition of the GA produced was a mixture of DL-forms with a 77% enantiomeric excess of D-GA.

View Article and Find Full Text PDF

Glycerol is currently produced in large amounts as a by-product during fat splitting and biodiesel fuel production. Over the past decade, both chemical and biotechnological processes to convert glycerol to value-added chemicals have been increasingly explored. This mini-review provides recent information about the biotechnological production of a glycerol derivative, D-glyceric acid (D-GA), and its possible applications.

View Article and Find Full Text PDF

Glyceric acid is produced by the conversion of glycerol via bioprocesses. The glycerate recovery from model solutions and from real culture broth was demonstrated by a desalting electrodialysis (ED) method. The addition of several impurities in glycerate model solutions, such as polypepton or yeast extract, did not have significant adverse effects on the whole ED process, and more than 93% of the glycerol added in the model solutions (50-150 g/l) was excluded.

View Article and Find Full Text PDF

Thirty-five glycerol-assimilating bacteria have recently been isolated from soil samples. Amplified ribosomal DNA restriction analysis revealed that these strains are grouped into four genetically different types of bacteria. Gas chromatography-mass spectrometry analysis of glycerol metabolites produced by the three selected strains (strains HH7, HH12, and HH31) revealed that extracts of culture liquid with ethyl acetate contains acetyl monoglyceride (monoacetin), which has not previously been reported as a glycerol metabolite and is used as a solvent, plasticizer, and food additive, as well as for other industrial purposes.

View Article and Find Full Text PDF

Bacterial strains capable of converting glycerol to glyceric acid (GA) were screened among the genera Acetobacter and Gluconacetobacter. Most of the tested Acetobacter and Gluconacetobacter strains could produce 1.8 to 9.

View Article and Find Full Text PDF

The development of fermentative yeasts secreting no organic acids is highly desirable for ethanol production coupled with membrane separation processes, because the acidic byproduct, succinic acid, significantly inhibits the membrane permeation of ethanol. Of the Pichia and Candida yeasts tested, Candida krusei IA-1 showed the highest ethanol productivity [55 g L(-1) day(-1) from 150 g L(-1) (w/v) of glucose], comparable to the strains of Saccharomyces cerevisiae, and produced much less of the acid (0.6 g L(-1) day(-1)) than the Saccharomyces strains (1.

View Article and Find Full Text PDF

In this paper, thermotolerant fungal strains which can grow on glycerol as the sole carbon source were isolated from soil samples. Morphological and molecular phylogenetic analyses of ten isolated strains showed that all strains belong to Aspergillus fumigatus. Analysis of their cellular fatty acid composition revealed that all the strains accumulated lignoceric acid (C24:0), suggesting that the isolated strains can be used to produce this high-value long-chain fatty acid from glycerol.

View Article and Find Full Text PDF

Lipase-catalyzed acetylation of 2-alkanol with vinyl acetate has been studied kinetically using Burkholderia cepacia lipase (BCL), enantiomerically pure (R)- and (S)-2-alkanols and different organic solvents. The rate equation was derived by the steady state method for the simplified mechanism. The second order rate constants (k(R) and k(S)) for (R)- and (S)-2-alkanols were evaluated from the slopes of the double reciprocal plots, v(-1) vs.

View Article and Find Full Text PDF

The lipase-catalyzed acetylation of 2-alkanol with vinyl acetate was studied using Burkholderia cepacia lipase (BCL), three alcohol and three organic solvents in a packed-bet reactor with a recycling system (flow method). The optical resolution data were found in agreement with those of the batch method in which BCL was suspended in the substrate solution. Repeated reaction results clearly indicated BCL in the packed-bed to be quite stable and to be usable for at least 50 reaction runs or to remain effective for as long as two months in the water-insoluble solvents such as hexane and 1,2-dichloroethane.

View Article and Find Full Text PDF