Publications by authors named "Keiji Kunimatsu"

The adsorption and oxidation of CO on commercial nanoparticle catalysts supported on carbon black (Pt/C, Pt3Co/C, PtRu/C) were examined at 23, 40, and 60 degrees C in 0.1 M HClO4 by use of in situ ATR-FTIR (attenuated total reflection Fourier-transform infrared) spectroscopy. Absorption bands for the adsorbed CO assigned to linear (atop) CO (CO(L)) and bridge CO (CO(B)) were observed around 2040 cm(-1) and 1850 cm(-1), respectively, at high CO coverage theta(CO) close to 0.

View Article and Find Full Text PDF

We have conducted combined time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) and proton conductivity measurements of Nafion NRE211 membrane during hydration/dehydration cycles at room temperature. Conductivity change was interpreted in terms of different states of water in the membrane based on its δ(HOH) vibrational spectra. It was found that hydration of a dry membrane leads first to complete dissociation of the sulfonic acid groups to liberate hydrated protons, which are isolated from each other and have δ(HOH) vibrational frequency around 1740 cm(-1).

View Article and Find Full Text PDF

ATR-FTIRAS measurements combined with linear potential sweep voltammetry were conducted to investigate oxidation of CO adsorbed on a highly dispersed Pt catalyst supported on carbon black, Pt/C, and carbon-unsupported Pt black catalyst, Pt-B. Bands nu(CO) of atop- and bridge-bonded COs were resolved into those of COs adsorbed at terrace and step edge sites by curve-fitting analysis. At the high coverage near the saturation, a band around 1950-1960 cm(-1) assigned to asymmetric bridge-bonded CO, CO(B)(asym), was observed to develop on both Pt/C and Pt-B, which was the predominant type on the latter.

View Article and Find Full Text PDF

Mechanism of selective oxygen reduction on platinum by 2,2'-bipyridine in the presence of methanol has been investigated by in situ surface-enhanced infrared absorption spectroscopy. The addition of 2,2'-bipyridine caused the decrease of adsorbed water molecules and those existing near the surface of platinum. The formation of both CO and formate, the latter being the intermediate in the non-CO path for methanol oxidation, depressed in the presence of 2,2'-bipyridine, suggests that 2,2'-bipyridine hinders methanol oxidation via both non-CO and CO paths on platinum.

View Article and Find Full Text PDF